
Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 1

Teachers’ Goals Predict Computational Thinking Gains in Robotics

Eben B. Witherspoon1*, Christian D. Schunn1

eben.witherspoon@pitt.edu; schunn@pitt.edu

1Learning Research and Development Center, University of Pittsburgh

* Corresponding author: Eben B. Witherspoon. Address: Learning Research and Development

Cetner, 3939 O’Hara St., Pittsburgh, PA 15260. Email: eben.witherspoon@pitt.edu

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 2

Abstract:

Purpose: Computational thinking (CT) is widely considered to be an important

component of teaching generalizable computer science skills to all students in a

range of learning environments, including robotics. However, despite advances in

the design of robotics curricula that can teach CT, actual enactment in classrooms

may often fail to reach this target. Understanding the various instructional goals

teachers’ hold when using these curricula may offer one potential explanation for

disparities in outcomes.

Design: In this study, we examine results from N=206 middle school students' pre-

and post-tests of computational thinking, attitudinal surveys, and surveys of their

teacher’s instructional goals, to determine if student attitudes and learning gains in

computational thinking are related to the instructional goals their teachers endorsed

while implementing a shared robotics programming curriculum.

Results: Our findings provide evidence that despite using the same curriculum,

students showed differential learning gains on the computational thinking

assessment when in classrooms with teachers who rated computational thinking as

a more important instructional goal; these effects were particularly strong for

women. Students in classroom with teachers who rated computational thinking

more highly also showed greater maintenance of positive attitudes towards

programming.

Originality/Value: While there is a growing body of literature regarding curricular

interventions that provide computational thinking learning opportunities, this study

provides a critical insight into the role that teachers may play as a potential support

or barrier to the success of these curricula. Implications for the design of

professional development and teacher educative materials that attend to teachers’

instructional goals are discussed.

Keywords: computational thinking, robotics, programming, goals, teacher learning

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 3

Introduction

Computer science education is now widely considered to be an integral part of a well-

rounded K-12 science, technology, engineering and mathematics (STEM) education. In the

United States, the Computer Science for All initiative urges that computer science (CS) learning

opportunities be provided not just within specialized elective classes or after-school clubs, but

also in general education classes that offer these experiences to every student (Smith, 2016). In

part, this policy shift is driven by a growing need for some base level of competence in

computing for students to remain competitive in a job market that increasingly requires

computational knowledge and skills, regardless of career trajectory. The U.S. Bureau of Labor

Statistics (2017) predicts that the fastest growing careers in the coming decade are likely those

that will require some degree of computational literacy, and the ability to use computers and

programming logic to solve problems in a variety of applications. Educational researchers have

sometimes used the term Computational Thinking (CT) to describe this particular 21st century

skill. A canonical and complete definition of CT remains unsettled in the literature, leading some

to advocate for the pragmatic approach of identifying core and peripheral concepts of CT; core

aspects typically include decomposing problems, designing algorithmic solutions, and

abstracting those solutions to multiple contexts (Voogt et al., 2015). Therefore, while many

definitions of CT exist, most emphasize the importance of drawing on heuristics from the field of

computer science to solve problems, and applying the knowledge and skills of computer science

to problem solve across a variety of contexts and subjects (Barr and Stephenson, 2011; Wing,

2006).

Educational psychologists have studied the possible cognitive benefits of using computer

science in K-12 to develop generalizable problem solving skills like computational thinking for

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 4

decades (Klahr and Carver, 1988; Pea and Kurland, 1984). In particular, specific computational

thinking concepts from computer science such as “commands execute in sequence”, “conditional

statements determine if and when to pass control of the program to a new set of commands” and

“programs repeat the commands a set number of times or until a condition is met” may be

generalizable across programming languages and contexts . However, still relatively little is

known about particular pedagogical practices that might be linked to effective instruction in this

class of generalizable computational skills.

Robotics is one field that has been studied by educational psychologists as a learning

environment that could potentially provide authentic opportunities to learn generalizable

computer programming skills in an applied setting (Grover and Pea, 2013). Relatively recent

advances in the design of educational technologies, informed by research in the learning

sciences, have shown promise in providing students with generative learning experiences that

may help develop the generalizable programming knowledge and skills prioritized by initiatives

like CS for All (Lye and Koh, 2014). For example, block-based graphical programming

languages can reduce syntax errors, allowing novice programmers to focus on the logic of their

programs control structure (Kelleher and Pausch, 2005; Robins et al., 2010). Specific to robotics

educational curricula, virtual simulations such as those used in the current study can reduce the

mechanical errors often introduced by physical robots, thereby reducing the cognitive load of

beginning programmers. Such simulated virtual curricula have been proven to teach

programming as well as physical robotics, but more efficiently (Liu, Schunn, et al., 2013).

Additionally, there is emerging evidence that certain features of these virtual robotics learning

environments may be associated with measurable gains in generalizable Computational Thinking

knowledge and skills (Witherspoon et al., 2017, 2018).

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 5

In the context of CS for All, educational robotics programs present themselves as a

convenient option for school districts aiming to take up this initiative. In the last few decades,

robotics programs have become almost ubiquitous in middle schools and high schools, both in

elective after-school programs and more recently in compulsory education as the required

technology becomes more broadly affordable (Melchior et al., 2005). However, in many K-12

settings, technology-rich programs like robotics are implemented within Technology Education

(“Tech Ed”) departments, which have historically focused on vocational training in specific and

often localized industrial technologies, and are taught by teachers with varied training and

experience in computer programming (Shields and Harris, 2007). Teachers in these classrooms

often hold a broad range of teaching certifications, from Business, Computer and Information

Technology to Career, Technical and Agricultural Education, and most teachers who are tasked

with teaching robotics are unlikely to have received specific professional development targeted

towards teaching either CS or CT (Ericson et al., 2008; Stephenson and Gal-Ezer, 2010). As use

of robotics for teaching CT expands, limitations in teacher expertise may act as a bottleneck on

positive learning outcomes.

The Critical Role of Teachers

It is well established that teachers play a critical role in student learning and attitudes;

however, a variety of mechanisms may mediate these effects in technology-rich environments.

Generally speaking, teacher beliefs about pedagogy and content interact with the written

curriculum to determine ways that instructional materials are implemented, often creating

disparities between curriculum as designed and curriculum as enacted (Remillard, 2005).

Particularly in technology-rich environments, external barriers such as lack of training and

hardware or software resources, and internal barriers such as confidence with the material,

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 6

valuation of technology, and beliefs about how students learn, could inform how teachers

interpret and enact curriculum (Ertmer et al., 1999). Teachers are known to vary greatly in their

understanding of CT and their attitudes towards integrating it into their classrooms, but CT

educational opportunities are often limited to preservice computer science teachers (Yadav et al.,

2014). Further, inquiry and project-based STEM reform curricula like those often found in

robotics, which aim for students to construct knowledge through largely self-directed

exploration, require substantial shifts in teaching practice from traditional, direct instruction

methods (Schneider and Krajcik, 2002). Therefore, it is likely that large variance exists in the

particular curricular focus and pedagogical approach to CT instruction across robotics programs,

as well as in learning outcomes for students.

In addition to influencing achievement, variation in the way curricular materials are

presented in robotics classrooms may also influence another important outcome of CS for All:

students attitudes towards programming (Witherspoon et al., 2018). Maintaining students

motivation to engage in programming activities may be particularly difficult in non-elective

classrooms (e.g., in middle schools that require all students to take a course in technology

education); research suggests that overall student valuation of STEM subjects tends to decline

beginning in the middle school years (Wigfield and Eccles, 2000). However, it is possible for

well-supported activities in middle school to maintain individual interest levels, which can

predict long term, self-generated engagement through college (Harackiewicz and Hulleman,

2010; Hidi and Renninger, 2006). Other attitudinal interventions that can be linked to pedagogy,

such as identity development through engagement in authentic tasks of the discipline, and

fostering students beliefs about their ability to do programming, can also predict students

achievement and continued participation in CS majors and careers (Collins, 2006; Engle, 2006;

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 7

Lent et al., 2016). Therefore, examining students’ attitudinal responses to different pedagogical

approaches while using a robotics programming curriculum could also offer important insights

into effects on both students’ achievement and persistence.

Teacher Goals

 Understanding teachers’ instructional goal setting could provide one useful framework

for predicting how teachers activate resources in ways that differ from the designed curriculum.

By “instructional goal”, we mean a specific statement that expresses what students should learn

in the language of a particular discipline, and is situated within a student-driven model of how

learning progresses (Stein and Meikle, 2017). Teachers’ goals that are explicitly stated and

refined into sub-goals at the lesson planning stage may improve the design of instructional

activities that increase student achievement (Hiebert et al., 2017). Research has also suggested

that instructional goal setting may be an emergent process that is responsive to a particular

context (Aguirre and Speer, 1999).

In learning environments like Tech Ed classrooms, where a relatively recent shift in focus

to computing technology has led to the acceptance of a broader variety of teacher certifications,

teacher rotation between multiple topical units, and a range of new tools and curricula,

departmental goals can often be complex and ill-defined. It is likely that Tech Ed teachers hold

multiple instructional goals simultaneously, and that those may at times conflict with the written

curriculum, determining which goals are implemented in the classroom (Davis, Janssen, & Van

Driel, 2016). Therefore, rather than circumventing these challenges with “teacher-proof”

curricular materials, it is necessary for curricular designers to consider curricular enactment as a

“local phenomenon that arises as a result of a number of factors, including…teachers’ goals,

local constraints, and teachers’ pedagogical values” (Drake and Sherin, 2006). Curriculum

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 8

developers aiming to teach CT may benefit from understanding the goals endorsed by Tech Ed

robotics teachers implementing their curriculum, to better provide strategies to deal with

potentially competing goals. Additionally, understanding Tech Ed robotics teachers’

instructional goals could aid in the design of professional development that ensures all teachers

have the knowledge and skills needed to align their instructional activities with higher level

curricular goals.

Therefore, while robotics curricular materials may be designed with intent to provide

opportunities to learn Computational Thinking, these goals are often altered by teachers on the

ground during moment-to-moment interactions with students. Particularly, in-service Tech Ed

robotics teachers may hold alternate goals for their classrooms based on past experiences (i.e.,

general goals about problem solving vs. specific goals about computational thinking), and under

the pressure of a complex and novel learning environment may be more likely to revert to prior

pedagogical practices that are more familiar (i.e., focusing on performance outcomes like

building the physical robot vs. learning outcomes like understanding computational concepts).

This variation in goals can lead to variation in student learning by classroom, even when teachers

have relatively similar experience, teach in similar learning contexts, and are using the exact

same curricular materials.

A better understanding of the importance teachers place on the different goals they have

in these classrooms may help predict when and how these differences in enactment may

manifest, and the effect that they have on student learning. Importantly, this information will be

useful for curriculum designers to account for in development of teacher instructional materials

and professional development. In this study, we examine how teachers’ ratings of the importance

of instructional goals around CT in middle school robotics classrooms are related to student

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 9

learning of CT. Specifically, we were interested if we would find differences based on CT

instructional goals for Tech Ed teachers using the same virtual robotics programming

curriculum, suggesting that these goals may be contributing factors to discrepancies in enactment

that produce variation in students Computational Thinking learning opportunities.

Methods

Sample

We examined the development of computational thinking in robotics classes in which all

student in the school were enrolled, within schools across multiple regions of the United States.

All human subjects research received Institutional Review Board (IRB) approval prior to the

commencement of the study. The analyses presented here examine a sample of N=206 middle-

school aged students (Mage=12.3, SDage=1.1) within classrooms in four school districts, focusing

on teachers with clearly differentiated instructional goals (described below). Students in this

sample predominately identified as White (72%), with multi-racial (18%) and Asian (6%)

making up the next two largest groups; the rest of the students either answered “Other”, “I don’t

know” or were from a variety of groups (e.g., Indian/Middle Eastern, Native American/Pacific

Islander) that each made up less than 1% of the data. Unlike elective robotics classes which are

often predominately male, robotics classrooms in which all students in the school were enrolled

consisted of a relatively evenly split by self-identified gender (51% female). Many of the

students in these courses (69%) had some prior experience with robotics before, but the majority

of students (77%) were engaging with this particular virtual robotics curriculum for the first

time.

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 10

In addition to student assessments, we also distributed multiple rounds of weekly surveys

to N=10 teachers across the US, which asked them to rate their instructional goals for their

classes on a weekly basis. Overall, our response rate from the teacher surveys was about 47%.

All of the responding teachers had earned a Master’s degree, were certified in a range of

specialties closely related to Technology Education (e.g., Business, Computers & Information

Technology; Career and Technical Education, Technology Education), and had a relatively high

number of years of teaching experience overall (Myears=12.6, SDyears=6.0). Additional details on

the four teachers selected for further analysis are presented in a later section.

Curricular Materials

The robotics curriculum used here, developed by Carnegie Mellon University and

Robomatter, involves a sequence of lessons in robotics programming utilizing a visual

programming language, ROBOTC Graphical (see Figure 1A). On average, instruction with the

curriculum ran for about 10 weeks, and included 24 mini-lessons across 4 units including topics

both specific to robotics (i.e., basic movement, sensors, repeated decisions) as well as core

computational thinking concepts (i.e., abstraction, decomposition, systems thinking). Earlier

versions of a similar virtual robotics curriculum have been reported on in previous studies (see

Witherspoon et al., 2017, 2018). The curricular materials incorporate elements which were

designed to support efficient learning and transfer of generalizable computational skills:

procedural scaffolds (worked examples, guided videos), dynamic mini-challenges, visual

programming language, and Robot Virtual Worlds (RVW), a virtual robotics programming

environment designed to emphasize the programming aspects of robotics, while maintaining

student interest and engagement (see Figure 1B). These features reflect a constructionist

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 11

approach to instruction, in which learners build increasingly complex programmed solutions and

construct an understanding of the requisite programming principles (Papert, 1980).

First, to provide a shared context for each unit, students are provided with a short

introductory video to frame the subsequent lesson activities. These videos are learner-paced and

present visual support together with a conversational narrative around the key concepts, to

reduce extraneous processing and foster generative processing (Mayer, 2008). Partial scaffolding

(Puntambekar and Hubscher, 2005) is introduced by way of questions to check students

understanding, step-by-step instruction on a conceptually related robotics programming activity,

and a brief post activity quiz to assess understanding, followed by the open-ended application of

these skills within a game-like challenge in the virtual programming environment, allowing

students to apply their knowledge more independently.

Students can iteratively test modular programmed solutions with simulated VEX IQ

robots in a three-dimensional virtual platform. Finally, these solutions are “remixed and reused”

(Brennan and Resnick, 2012) to complete more complex virtual challenges, in which learners

must apply their previous programming knowledge to problem solving tasks that foreground

computational thinking principles like abstraction, decomposition, and systems thinking. To

solve these challenges, students used a programming language called ROBOTC Graphical (see

Figure 1A) to develop programmed solutions. ROBOTC Graphical has a visual programming

language interface, intended to allow students to focus on the broader logic of programming

while deemphasizing the particular syntactic requirements of more traditional programming

languages.

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 12

 (A) (B)

Figure 1. Samples of the ROBOTC graphical programming language (A), and a RVW virtual

robotics programming task (B). In this task, using if/else statements, loops, and sensors, students

program the robot to sort flags onto the left or right conveyor belt based on the color, which is

dynamically assigned.

By representing robotics challenges in a virtual environment, this curriculum offers

affordances over physical robotics programs by reducing the potential frustration and distractors

of mechanical error, enabling students to focus on higher-level computational principles of

programming. While physical robots may have some advantages, a study by Liu et. al (2013)

found that students using an earlier version of this technology achieved learning gains in

programming content equivalent to students using physical robots, but in significantly less time.

Further, simulating robot movement reflects an authentic engineering practice (see Michel,

2004), and virtual robots are also less expensive than physical ones, allowing the benefits of the

curriculum to reach a broader population where the costs of physical robotics curricula can be

prohibitive.

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 13

Measures & Procedures

Teacher instructional goals. In order to understand which instructional goals teachers

were emphasizing in these classrooms, we distributed a weekly online survey to teachers

throughout the semester in which they were using the curriculum. These surveys were developed

through pilot studies consisting of pre-lesson goal setting activity conducted with a small group

of local robotics teachers using the same virtual curriculum. From these pilot studies, we noted

that only some teachers were setting goals related to core CT concepts that were included in the

curriculum. These teachers included goals such as “students learn that in a conditional loop, the

condition determines when/how long the commands repeat,” while other teachers identified

goals such as “students will complete lesson activities 1-3”. The resulting surveys used in the

current study asked teachers to rate the importance of a set of goals focused on specific

computational thinking learning outcomes (e.g. “During class this week, my goal was that

students would learn…that programs execute commands in sequence”) on a 3-point Likert scale

from (1) Least Important to (3) Most Important (see Appendix A for sample teacher goals

measures). Additionally, teachers were asked to provide demographic information such as level

of teaching experience, teaching certification, and prior exposure to the curriculum. These

surveys were purposefully kept relatively brief to promote survey completion.

Overall, teachers were given nine opportunities to respond to the survey over the course

of a semester. From the total group of ten teachers who received the survey, four teachers

provided a sufficient number of responses (n ≥ 5) across all items to generate a reasonably

robust measure of their average rating of each goal, and so these four teachers were purposively

selected for additional analysis. The four teachers selected for final analysis were all white, male,

and had a similar level of teaching experience (Myears=13.8, SDyears = 3.0). Overall, teachers

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 14

tended to rate most goals as at least moderately important; based on the distribution of teachers’

responses, we used a median split to group them into two categories: “Low CT”, consisting of

two teachers who had an average overall rating of computational thinking goals of 2.5 or below

(Mrating=2.1, SDrating=0.3) across 11 combined ratings, and “High CT”, consisting of two teachers

who had an average overall rating of computational thinking goals of 2.5 or higher (Mrating=2.8,

SDrating=0.4) across 12 combined ratings. In other words, teachers who typically rated the goals

as only moderately important versus teachers who typically rated the goals as most important;

this difference in ratings was a large effect size (Cohen’s d= 2.2). Both High CT teachers held

Technology Education certifications, while one Low CT teacher held a Business, Computers and

Information Technology certification, and the other held both Career & Technical Education and

Biology certifications. In each group, one teacher reported having approximately 4 years of

experience with the curriculum, while the second teacher in each group was using the curriculum

for the first time.

Computational thinking assessments. After grouping the four teachers based on their

rating of CT goals, we then examined the pre- and post-test scores of students in each of these

teachers’ classrooms, to see if there were significant differences in learning as measured by the

assessments of computational thinking for students in Low CT teachers’ classrooms (n=57) and

students in a High CT teachers’ classrooms (n=149; see Table 1).

The primary outcome measure was an externally-created computational thinking

assessment used as a post-test. It consisted of five multiple choice items that were adapted for a

robotics context from the Exploring Computer Science - Principled Assessment of

Computational Thinking (PACT) (Goode and Margolis, 2011). These assessments were

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 15

specifically created using evidence-centered design to assess knowledge, skills and attributes

associated with computational thinking practices1.

An alternative assessment was needed that could be used to verify equivalence of both

general programming skills and computational thinking skills across classes before instruction,

as well as avoid test-retest effects. We had previously developed such an assessment that

contained programming and computational thinking items (see Appendix B for sample

assessment items). These items were developed to target three core programming concepts

common across a range of accepted frameworks of programming and computational thinking;

sequences, conditions and iteration (see College Board, 2016; Computer Science Teachers

Association, 2016; Bienkowski et al., 2015) and have been shown in prior work to be a reliable

measure of students programming and computational thinking knowledge (see).

Our school district partners requested that we reduce class time required for an

assessment that is only establishing equivalence at the class level. Therefore students received

one of four randomly assigned sections of the computational thinking assessment at pre-test;

each of the four sections of the pre-test consisted of five multiple choice items each. The overall

average Armor’s q was θ = .44 for the pre-test, and θ = .74 for the post-test2. Relatively low theta

values are common for relatively short assessments that are intended to cover a range of

concepts. When corrected to account for possible attenuation of correlation caused by the

measurement error, the pre-post correlation was ρ = .60 (see Fan, 2003).

Attitudes towards programming. Additionally, students also completed a short attitudinal

survey prior to the pre and post-test exams, with 12 items that asked students about their interest,

1 Sample items can be found at https://pact.sri.com/resources.html
2 Armor’s q and polychoric correlations are similar to Cronbach’s a and Pearson’s correlations, respectively, but are
more appropriate for binary data (item correct vs. item incorrect; see Panter et al., 1997)

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 16

competency beliefs, and development of identity in computer programming (see Appendix C for

sample survey items). Different scales were used across these items as a strategy for slowing

respondents down and getting them to read each item more closely, and to allow for different

measures of intensity (i.e., frequency of experiences vs. strength of endorsement). Interest was

gauged through four items (e.g., “I wonder about how computer programs work”, Cronbach’s

a=.87), rated along a four-point Likert scale (e.g. “Never” to “Every Day”). Four items gauged

level of identity as a programmer (e.g., “My family thinks of me as a programming person”,

a=.88), rated along a four-point Likert scale (e.g. NO! to YES!). Competency beliefs were

gauged through four items (e.g., “I am sure I could do advanced work in programming”, a=.83)

rated along a six-point Likert scale (e.g. “Strongly Disagree” to “Strongly Agree”). Based on a

prior pilot survey, which suggested that students struggled to accurately rate their competency

prior to obtaining some knowledge of the content, only these items were measured using

retrospective pre- items (i.e., students were asked at post to rate both their competency at the

beginning of the curriculum and their competency now; see Pratt et al., 2000). Attitudinal

measures at both pre and post were significantly correlated with each other, but not so high as to

be redundant measures. For ease of interpretation across these different scales, prior to analyses

all attitudinal measures were converted to a proportion, with the lowest rating as 0 and the

highest rating as 1.

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 17

Table 1.

Descriptive statistics of student and teacher background characteristics and pre-test levels for

High CT and Low CT classroom groups (SD in parentheses), along with the t-test contrast of the

pre-test group means and the 95% CI of the difference in means for each measure.

Measures
Teacher Goal Groups

t 95% CI CT Low
(N=57)

CT High
(N=149)

Teacher characteristics†
Teacher rating of CT 2.1 (.30) 2.8 (.38) - -
Teacher exp. (years) 14.0 (1.4) 13.5 (4.9) - -

Student characteristics
Student robotic exp. 33% 30% -0.5 -18%, 10%
Student CS2N exp. 9% 28% -2.9** -31%, -6%
Student age (years) 11.7 (1.2) 12.5 (1.0) -5.2** -1.2, -0.6

Student assessments
Pre-test 2.2 (1.2) 2.3 (1.1) 0.7 -0.21, 0.46

Student surveys
Competency Beliefs .53 (.20) .51 (.20) 0.6 -0.04, 0.08
Identity .59 (.13) .52 (.19) 1.5 -0.02, 0.17
Interest .66 (.15) .60 (.19) 1.2 -0.04, 0.15

Note. **p<.01
†For teacher data, a dash (-) is shown in place of t-statistics and 95%CI because of
low teacher sample size

Analyses

Average pre-test scores of students in the two High CT teachers’ classrooms were

compared against the average pre-test scores of students in the two Low CT teachers’ classrooms

using a simple t-test, as well as other teacher and student characteristics to establish that the High

CT and Low CT groups were comparable. Post-test scores were analyzed using ANCOVA,

comparing differences in average post-test scores in the two groups while controlling for the pre-

test score, age, and curricular experience, to increase statistical power by accounting for

individual differences in students’ pre-tests, and to account for slight differences in pre-group

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 18

composition on those variables. Finally, motivation variables were also measured using an

ANCOVA of post-survey scores, controlling for pre-survey scores, age and curriculum

experience.

Results

We first examined whether or not initially the two groups of students in the Low CT and

High CT classrooms were relatively comparable on the assessment of computational thinking. A

Levene’s robust test for homogeneity of variance showed that there were no significant

differences in variance between the two Low CT and High CT groups at pre-test, F(1, 204)<1,

p=.79. Further, no significant differences were found in pre-test scores (t =-0.75, p=.45, d=0.11),

between students in a classroom taught by a teacher with a Low CT rating (Mscore =2.2,

SDscore=1.2) or students in a classroom taught by a teacher with a High CT rating (Mscore=2.3,

SDscore=1.1; see Figure 1).

Critically, on the post-test, being in a classroom taught by a High CT rating teacher was

associated with significantly higher scores (Mscore=2.6, SDscore=1.3) than being in a classroom

with a teacher who gave a Low CT rating (Mscore=2.1, SDscore=1.4; t= -2.67, p<.01, d=0.41; see

Figure 2). Thus, we have evidence of differential gains by teacher goals even when the same

curriculum is being used.

However, the two groups were not fully equivalent by background. To account for small

differences found in age and prior experience with the curriculum between the Low CT and High

CT groups, an ANCOVA was conducted on post-test scores, controlling for pre-test scores, age,

and prior experience with the curriculum. Even with these controls, students in the High CT

group showed higher mean post-test scores than students in the Low CT group, F(4,198)=2.90,

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 19

p=.06, although these differences were no longer statistically significant, and the effect size was

reduced to d=0.29, meaning the two distributions overlap approximately 88% (see Figure 2).

Importantly, aligning with the priority of CS for All in a robotics classroom in which all

student in the school are enrolled, our results also show that only in High CT classrooms, girls

had a significantly higher score [F(4,141)=3.95, p<.05, d=0.30] on the post-test (Mscore=2.8,

SEscore=0.1) than boys (Mscore=2.4, SEscore=0.2), even when controlling for pre-test scores, age

and curriculum experience. Thus, while in our sample significant differential gains in CT

between the two groups were not found overall when including these additional controls, having

a robotics teacher that endorsed CT goals shows significantly higher learning gains for women

relative to men.

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 20

Figure 2. Differences between student scores by teacher rating of computational thinking goals

(with SE bars), on A) pre-test and B) post-test, and C) post-test with controls for pre-test, age and

prior experience.

For the final set of analyses, we examined differences in attitudinal measures for students

in classroom with Low or High CT teachers. Overall, at pre- there were no significant

differences between the two groups in Competency Beliefs (t = 0.62, p=.54), Identity (t = 1.2, p

=.23) or Interest (t = 0.70, p = .48). At post, an ANCOVA revealed that while there were no

significant differences between the two groups in Competency Beliefs [F(4,192)=1.22, p=.27, d

= .16], the High CT group had significantly higher post-survey scores in both Identity

[F(4,108)=6.73, p<.05, d=0.59] and Interest [F(4,108)=10.88, p<.01, d=0.71], when controlling

for pre-survey, age and curriculum experience (see Figure 3). Importantly, these higher scores

represent a relative maintenance of programming Identity and Interest from pre-test scores for

those students in the High CT group, while students in the Low CT group largely experienced

0

0.5

1

1.5

2

2.5

3

3.5

 Low CT High CT Low CT High CT Low CT High CT

 Pre Post Post (with controls)

ns

ns = not significant; ~p<.10, * p<.05, ** p<.01

d = .41*

d = .29~

ns

d = .30*
A) B) C)

Male

Female

Po
in

ts
 E

ar
ne

d

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 21

significant declines in both programming Identity (t=-2.81, p<.05, d=.41) and Interest (t=-3.74,

p<.01, d=.46).

Figure 3. Post-motivation by teacher rating of computational thinking goals (with SE bars),

controlling for students’ pre-motivation scores (mean shown as dotted line), age, and curriculum

experience.

Discussion

Overall, our results show that when teachers endorsed computational thinking as a critical

instructional goal, their students had gains in computational thinking and also had greater

maintenance of positive attitudes towards programming. Particularly, girls in mixed-gender

robotics classrooms with a teacher who endorsed computational thinking instructional goals

0

0.25

0.5

0.75

1

Low CT High CT Low CT High CT Low CT High CT

Competency Beliefs Identity Interest

St
ro

ng
ly

D
is

ag
re

e
N

eu
tr

al
St

ro
ng

ly
A

gr
ee

d = .71**

ns

ns = not significant; ~ p<.10; * p<.05; ** p<.01

----- mean pre-score

d = .59*

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 22

outperformed boys, suggesting that this re-framing of the instructional focus of these

traditionally male-dominated learning environments may help support achievement in

programming for young women. Importantly, these differences in outcomes were found across

teachers with similar experience and who were implementing the same virtual robotics

curriculum. These findings suggest the key role instructional goals play in the development of

Computational Thinking, similar to the mathematics education literature which propose that

teachers goals act as a “north star”, guiding a variety of instructional decisions (Stein and

Meikle, 2017). Further, this study lays the foundation for future work examining how the diverse

goals held by educators who teach Computational Thinking, in a broad range of learning

environments, may determine how designed curriculum materials are adapted during curricular

enactment. While the current study did not examine the specific curricular adaptations that were

made, this study makes clear that an understanding of the instructional goals endorsed by the

teacher is a significant contributor to student learning outcomes, and one that must be accounted

for in the design of curriculum. Including teacher educative materials that provide insight into

the design of lesson activities, identify aspects of enactment that are critical to the learning goal,

and develop own teachers’ capacity to design CT lessons, may help teachers avoid adaptations

that reduce opportunities to learn computational thinking (Brown and Edelson, 2003; Davis and

Krajcik, 2005).

Additionally, these findings suggest a need for ongoing professional development support

for teachers that not only provides instruction on the use of the materials, but also explicitly

attends to the goals of the curriculum, and potential areas where these goals may come into

conflict with goals held by the teacher. Prior research has suggested that goal-coherent

professional development can play a key role in reducing ambiguity and uncertainty and

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 23

supporting teachers sensemaking around new curricular initiatives where conflicting goals may

exist (Allen and Penuel, 2015). This may be particularly important in the expanding range of

educational programs like robotics in Technology Education environments, which are often

tasked with incorporating computer science and Computational Thinking into their ongoing

curriculum. The demands of these new initiatives often represent a large shift from the prior

pedagogical approaches and instructional goals teachers in these spaces are familiar with

(Schneider and Krajcik, 2002). Without adequate attention paid to the ways in which these goals

may diverge from those already in place, initiatives like CS for All and innovative curricular

reforms may experience a bottleneck in their ability to see the desired gains in student learning.

Limitations

The inferences that can be drawn from this study are limited by a number of factors.

First, the analyses conducted are correlational in nature and there was no random assignment to

experimental condition. Therefore, we cannot be certain whether the combination of exposure to

the curriculum and the teacher instructional goals are in fact causing the observed differences in

scores, or if other unobserved factors may be contributing to the larger gains for students in the

High CT group. In a related way, due to our limited student and teacher sample sizes, analyses

were unable to account for nesting within schools or classrooms. We are therefore uncertain that

there are not school-level differences that may be contributing to differences in student gains.

Another limitation with the current data was the relatively low correlation between our pre- and

post-tests due to the practical necessity of a limited number of assessment items. The error

introduced when these imperfectly correlated pre-tests were included as a control resulted in our

statistical tests for knowledge gains being underpowered.

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 24

Second, due to the distributed nature of the classrooms around the US, we did not have

observational measures of instruction, and therefore we do not know what teachers did to

produce the changes in outcome. We also were unable to interview participating teachers to

uncover how prior teacher certification programs and professional development opportunities

may have influences their instructional goals. However, pilot interviews with local robotics

teachers using this virtual curriculum indicate that although all teachers identified “problem

solving and learning how to think” as core instructional goals, only those who selected CT goals

similar to those in our surveys would enact lessons in ways that emphasized CT relevant features

of the curricular activities. For example, while enacting an activity in which students program a

robot to move a row of boxes, a teacher who selected a student learning goal that “conditional

statements determine when to pass control of the program to a new set of commands” directed

students’ to think about using conditions to generate a program that allows the robot to account

for different distances between the boxes. Future research should explore the ways in which

teachers introduce activities, guide class discussion, and respond to student questions/struggles

as possible vehicles of the effects of teacher goals on student learning outcomes (Stein et al.,

2008; Stein and Meikle, 2017).

Conclusion

While prior studies using a similar virtual robotics curriculum have demonstrated that

students may gain generalizable programming knowledge and skills from these learning

experiences, here we show that even within similar classrooms using the exact same curriculum,

differences may appear, and that teachers’ instructional goals may be a significant contributor to

these differences. Future work would benefit from gathering a larger teacher sample which

would allow us to statistically account for different contextual factors, such as nesting effects

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 25

within different schools and how certification may play a role in robotics teachers’

conceptualization of their instructional goals. Further, additional development of the survey of

instructional goal setting, and qualitative interviews and classroom observations with teachers,

could provide additional insight into the mechanisms through which these goals manifest in

classroom activities, how teachers conceptualize goals around computational thinking in the

classroom, and what framing of these goals may be most productive for teaching students

generalizable programming knowledge and skills.

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 26

Acknowledgements

This work was supported by a grant from the National Science Foundation, Division of Research

on Learning in Formal and Informal Settings (DRL 1418199). The opinions are those of the

authors and do not represent the policies of the funding agency. We would also like to

acknowledge Ross Higashi and Josh Jarvis for their consultation and support with the

development and design of the curricular materials, and Mary Kay Stein for her insights and

comments on an earlier draft. This research has been approved by the Human Research

Protection Office at the University of Pittsburgh.

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 27

References

Aguirre, J. and Speer, N.M. (1999), “Examining the Relationship Between Beliefs and Goals in

Teacher Practice”, The Journal of Mathematical Behavior, Vol. 18 No. 3, pp. 327–356.

Allen, C.D. and Penuel, W.R. (2015), “Studying Teachers’ Sensemaking to Investigate Teachers’

Responses to Professional Development Focused on New Standards”, Journal of Teacher

Education, Vol. 66 No. 2, pp. 136–149.

Barr, V. and Stephenson, C. (2011), “Bringing Computational Thinking to K-12: What is

Involved and What is the Role of the Computer Science Education Community ?”, ACM

Inroads, Vol. 2 No. 1, pp. 48–54.

Bienkowski, M., Snow, E., Rutstein, D. and Grover, S. (2015), Assessment Design Patterns for

Computational Thinking Practices in Secondary Computer Science : A First Look, Menlo

Park, CA, available at: http://pact.sri.com/resources.html

Brennan, K. and Resnick, M. (2012), “New frameworks for studying and assessing the

development of computational thinking”, Annual American Educational Research

Association Meeting, Vancouver, BC, Canada, pp. 1–25.

Brown, M. and Edelson, D.C. (2003), Teaching as Design: Can We Better Understand the Ways

in Which Teachers Use Materials so We Can Better Design Materials to Support Their

Changes in Practice?, Evanston, IL: The Center for Learning Technologies in Urban

Schools, available at: http://www.inquirium.net/people/matt/teaching_as_design-Final.pdf

College Board. (2016), AP Computer Science Principles, New York, NY, available at:

https://apstudent.collegeboard.org/apcourse/ap-computer-science-principles/about-the-exam

Collins, A. (2006), “Cognitive Apprenticeship”, in Sawyer, R.K. (Ed.), The Cambridge

Handbook of the Learning Sciences, Cambridge University Press, Cambridge, UK, pp. 47–

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 28

60.

Computer Science Teachers Association. (2016), Interim CSTA K-12 Computer Science

Standards, New York, NY, available at: http://www.csteachers.org/page/standards

Davis, E.A., Janssen, F.J.J.M. and Van Driel, J.H. (2016), “Teachers and science curriculum

materials: where we are and where we need to go”, Studies in Science Education,

Routledge, Vol. 7267 No. May, pp. 1–34.

Davis, E.A. and Krajcik, J.S. (2005), “Designing Educative Curriculum Materials to Promote

Teacher Learning”, Source: Educational Researcher, Vol. 34 No. 3, pp. 3–14.

Drake, C. and Sherin, M.G. (2006), “Practicing Change: Curriculum Adaptation and Teacher

Narrative in the Context of Mathematics Reform”, Curriculum Inquiry, Vol. 36 No. 2, pp.

154–187.

Engle, R.A. (2006), “Framing Interactions to Foster Generative Learning: A Situative

Explanation of Transfer in a Community of Learners Classroom”, The Journal of the

Learning Sciences, Vol. 15 No. 4, pp. 451–498.

Ericson, B., Armoni, M., Gal-Ezer, J., Seehorn, D., Stephenson, C. and Trees, F. (2008),

Ensuring Exemplary Teaching in an Essential Discipline: Addressing the Crisis in

Computer Science Teacher Certification, New York, NY.

Ertmer, P.A., Paul, A., Molly, L., Eva, R. and Denise, W. (1999), “Examining Teachers ’ Beliefs

About the Role of Technology in the Elementary Classroom”, Journal of Research on

Computing in Education, Vol. 32 No. 1, pp. 54–72.

Fan, X. (2003), “Two approaches for correcting correlation attenuation caused by measurement

error: Implications for research practice”, Educational and Psychological Measurement,

Vol. 63 No. 6, pp. 915–930.

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 29

Goode, J. and Margolis, J. (2011), “Exploring Computer Science”, ACM Transactions on

Computing Education, Vol. 11 No. 2, pp. 1–16.

Grover, S. and Pea, R. (2013), “Computational Thinking in K-12: A Review of the State of the

Field”, Educational Researcher, Vol. 42 No. 1, pp. 38–43.

Harackiewicz, J.M. and Hulleman, C.S. (2010), “The Importance of Interest: The Role of

Achievement Goals and Task Values in Promoting the Development of Interest”, Social and

Personality Psychology Compass, Vol. 4 No. 1, pp. 42–52.

Hidi, S. and Renninger, K.A. (2006), “The Four-Phase Model of Interest Development”,

Educational Psychologist, Vol. 41 No. 2, pp. 111–127.

Hiebert, J., Morris, A.K. and Spitzer, S.M. (2017), “Diagnosing Learning Goals: An Often-

Overlooked Teaching Competency”, in Lueders, T., Philipp, K. and Lueders, J. (Eds.),

Diagnostic Competence of Mathematics Teachers, 11th ed., Springer International, Cham,

Switzerland, pp. 193–206.

Kelleher, C. and Pausch, R. (2005), “Lowering the Barriers to Programming : a survey of

programming environments and languages for novice programmers”, Science, Vol. 37 No.

2, pp. 83–137.

Klahr, D. and Carver, S.M. (1988), “Cognitive objectives in a LOGO debugging curriculum:

Instruction, learning, and transfer”, Cognitive Psychology, Vol. 20 No. 3, pp. 362–404.

Lent, R.W., Miller, M.J., Smith, P.E., Watford, B.A., Lim, R.H. and Hui, K. (2016), “Social

cognitive predictors of academic persistence and performance in engineering: Applicability

across gender and race/ethnicity”, Journal of Vocational Behavior, Elsevier Inc., Vol. 94

No. 0827470, pp. 79–88.

Liu, A., Newsom, J., Schunn, C. and Shoop, R. (2013), “Students Learn Programming Faster

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 30

through Robotic Simulation”, Tech Directions, Vol. 72 No. march, pp. 16–19.

Liu, A., Schunn, C.D., Flot, J. and Shoop, R. (2013), “The role of physicality in rich

programming environments”, Computer Science Education, Routledge, Vol. 23 No. 4, pp.

315–331.

Lye, S.Y. and Koh, J.H.L. (2014), “Review on teaching and learning of computational thinking

through programming: What is next for K-12?”, Computers in Human Behavior, Elsevier

Ltd, Vol. 41, pp. 51–61.

Mayer, R.E. (2008), “Applying the science of learning: evidence-based principles for the design

of multimedia instruction.”, The American Psychologist, Vol. 63 No. 8, pp. 760–769.

Melchior, A., Cohen, F., Cutter, T. and Leavitt, T. (2005), More than Robots: An Evaluation of

the FIRST Robotics Competition Participant and Institutional Impacts, Waltham, MA.

Michel, O. (2004), “Webots TM : Professional Mobile Robot Simulation”, International Journal

of Advanced Robotic Systems, Vol. 1 No. 1, pp. 39–42.

Panter, A.T., Swygert, K.A., Dahlstrom, W.G. and Tanaka, J.S. (1997), “Factor Analytic

Approaches to Personality Item-Level Data”, Journal of Personality Assessment, Vol. 68

No. 3, pp. 561–589.

Papert, S. (1980), Mindstorms, Basic Books, Inc., New York, NY, available at:

http://dl.acm.org/citation.cfm?id=1095592

Pea, R.D. and Kurland, D.M. (1984), “On the cognitive effects of learning computer

programming”, New Ideas in Psychology, Vol. 2 No. 2, pp. 137–168.

Pratt, C.C., McGuigan, W.M. and Katzev, A.R. (2000), “Measuring Program Outcomes : Using”,

American Journal of Evaluation, Vol. 21 No. 3, pp. 341–349.

Puntambekar, S. and Hubscher, R. (2005), “Tools for scaffolding students in a complex learning

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 31

environment: What have we gained and what have we missed?”, Educational Psychologist,

Vol. 40 No. 1, pp. 1–12.

Remillard, J.T. (2005), “Examining Key Concepts in Research on Teachers’ Use of Mathematics

Curricula”, Review of Educational Research, Vol. 75 No. 2, pp. 211–246.

Robins, A., Rountree, J. and Rountree, N. (2010), “Learning and Teaching Programming : A

Review and Discussion”, Computer Science Education, Vol. 13 No. 2, pp. 137–172.

Schneider, R.M. and Krajcik, J. (2002), “Supporting Science Teacher Learning : The Role of

Educative Curriculum Materials”, Journal of Science Teacher Education, Vol. 13 No. 3, pp.

221–245.

Shields, C.J. and Harris, K. (2007), “Technology Education : Three Reasons Stereotypes

Persist”, Journal of STEM Teacher Education, Vol. 44 No. 2, pp. 60–72.

Smith, M. (2016), “Computer Science For All”, The White House Blog, pp. 1–13.

Stein, M.K., Engle, R. a., Smith, M.S. and Hughes, E.K. (2008), “Orchestrating Productive

Mathematical Discussions: Five Practices for Helping Teachers Move Beyond Show and

Tell”, Mathematical Thinking and Learning, Vol. 10 No. 4, pp. 313–340.

Stein, M.K. and Meikle, E. (2017), “The nature and role of goals in mathematics education”, in

Spangler, D. and Wanko, J. (Eds.), Research Companion to Principles to Action, National

Council of Teachers of Mathematics, Reston, VA, pp. 1–11.

Stephenson, C. and Gal-Ezer, J. (2010), “Computer Science Teacher Preparation is Critical”,

ACM Inroads, Vol. 1 No. 1, pp. 61–66.

U.S. Bureau of Labor Statistics. (2017), Employment Projections: Occupational Projections and

Worker Characteristics, available at: https://www.bls.gov/emp/ep_table_107.htm

Voogt, J., Fisser, P., Good, J., Mishra, P. and Yadav, A. (2015), “Computational thinking in

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 32

compulsory education: Towards an agenda for research and practice”, Education and

Information Technologies, Vol. 20 No. 4, pp. 715–728.

Wigfield, A. and Eccles, J.S. (2000), “Expectancy–Value Theory of Achievement Motivation”,

Contemporary Educational Psychology, Vol. 25 No. 1, pp. 68–81.

Wing, J.M. (2006), “Computational thinking”, Communications of the ACM, Vol. 49 No. 3, p.

33.

Witherspoon, E.B., Higashi, R.M., Schunn, C.D., Baehr, E.C. and Shoop, R. (2017),

“Developing computational thinking through a virtual robotics programming curriculum”,

ACM Transactions on Computing Education, Vol. 18 No. 1, available

at:https://doi.org/10.1145/3104982

Witherspoon, E.B., Schunn, C.D., Higashi, R.M. and Shoop, R. (2018), “Attending to structural

programming features predicts differences in learning and motivation”, Journal of

Computer Assisted Learning, Vol. 34, pp. 115–128.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S. and Korb, J.T. (2014), “Computational

Thinking in Elementary and Secondary Teacher Education”, ACM Transactions on

Computing Education, Vol. 14 No. 1, pp. 1–16.

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 33

Appendix A. Sample teacher goal items

Rate the following goals as Least Important to Most Important to your class this week. Then,
indicate how often you spent time during class on the following topics.

You do not need to marks goals that are not applicable. If there are other goals you had that are
not listed, use an "Other" box and briefly describe them.

"During class this week, my goal was that students would learn..."

 Least

Important Important Most
Important

That programs execute each command in order
from top to bottom, unless otherwise directed. O O O

That programs use conditional statements to
determine if and when to pass control of the
program to a new set of commands.

O O O

That programs will repeat the commands inside a
looping structure either a set number of times, or
until a condition is met.

O O O

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 34

Appendix B. Sample assessment items

Table A1. An overview of the dimensions and programming concepts in the bank of items used
for the pre-assessment.

Dimensions Items Concepts Items Example content
Robot
Programming

10 Sequences 3 What sequence of movements will get the
robot to the end of the maze?

Conditions 4 At what distance sensor value will the
robot stop moving?

Loops 3 Which actions will the robot repeat if the
bumper sensor is pushed in?

Computational
Thinking

10 Sequences 3 Will the removal of this line of the program
change the display on a heart monitor?

Conditions 4 At what combination of blood pressure
readings will this heart monitor emit an
alarm?

Loops 3 Which of these two programs will identify
the correct blood pressure in the least
number of iterations?

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 35

Sample robotics programming item

Take a look at the program plan below. How will each individual line of code be run once it is
programmed?

Line 1: Move forward for 5 seconds, at 100% speed
Line 2: Turn left 1 rotation, at 50% speed
Line 3: Move forward for 5 seconds, at 50% speed
Line 4: Turn right 1 rotation, at 50% speed

Select one:

O Only the first command runs
O The commands are run in order according to their line numbers
O All commands run at once
O The commands are run in a random order

Which of the following is true about conditions?

Select one:

O They must always end up either true or false
O They represent decision-making logic in a program
O You can write a condition that is always true or always false
O All of the above

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 36

Sample computational thinking item

Scenario: Personal Fitness Devices
Personal fitness devices use electronic sensors to continuously monitor and track data about a
user’s heath such as steps taken, calories burned, and heart rate.

The BP-Sure company is developing a new feature for their fitness device that also measures the
user’s blood pressure, using sensors that detect a user’s heartbeat. When the heart pushes blood
through the arteries, the device records "Pressure 1", and when the heart is resting, the device
records “Pressure 2”.

The device can determine if a user’s blood pressure is in the Normal, Medium or High range, by
comparing blood pressure readings to the chart below.

Use the chart below to answer questions #19, #20 and #21.

A new programmer on the team writes the following series of steps to determine the display
when a user is in the “Normal BP” range:
	
(Line	1)	 IF (p1 <= 120 AND
(Line	2)	 p1 <= 121 AND
(Line	3)	 p2 <= 80 AND
(Line	4)	 p2 <= 81)
(Line	5)	 THEN	set display = “Normal	BP”

Which lines can be removed to make the code more efficient, while not changing the code
output?

Select one:

O Line 1 and Line 4
O Line 2 and Line 3
O Line 2 and Line 4
O Line 1 and Line 3

Blood Pressure Pressure 1 (p1) Pressure 2 (p2)
Normal BP p1 <= 120 AND p2 <= 80
Medium BP 121 <= p1 <= 139 AND 81 <= p2 <= 89
High BP p1 >= 140 OR p2 >= 90

Running Head: TEACHER GOALS PREDICT LEARNING COMPUTATIONAL THINKING

 37

Appendix C. Sample survey items

Sample competency belief items

 “I am sure that I can learn programming.”
 Strongly

Agree
Somewhat

Agree Agree Disagree Somewhat
Disagree

Strongly
Disagree

With what I knew on the
FIRST DAY of the
course…

O O O O O O

With what I know
TODAY…

O O O O O O

 “I could get an A on a programming assignment
in class.”

 Strongly
Agree

Somewhat
Agree Agree Disagree Somewhat

Disagree
Strongly
Disagree

With what I knew on the
FIRST DAY of the
course…

O O O O O O

With what I know
TODAY…

O O O O O O

 “I am sure that I could do advanced work in
programming.”

 Strongly
Agree

Somewhat
Agree Agree Disagree Somewhat

Disagree
Strongly
Disagree

With what I knew on the
FIRST DAY of the
course…

O O O O O O

With what I know
TODAY…

O O O O O O

