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Abstract: 

Purpose: Computational thinking (CT) is widely considered to be an important 

component of teaching generalizable computer science skills to all students in a 

range of learning environments, including robotics. However, despite advances in 

the design of robotics curricula that can teach CT, actual enactment in classrooms 

may often fail to reach this target. Understanding the various instructional goals 

teachers’ hold when using these curricula may offer one potential explanation for 

disparities in outcomes. 

Design: In this study, we examine results from N=206 middle school students' pre- 

and post-tests of computational thinking, attitudinal surveys, and surveys of their 

teacher’s instructional goals, to determine if student attitudes and learning gains in 

computational thinking are related to the instructional goals their teachers endorsed 

while implementing a shared robotics programming curriculum.  

Results: Our findings provide evidence that despite using the same curriculum, 

students showed differential learning gains on the computational thinking 

assessment when in classrooms with teachers who rated computational thinking as 

a more important instructional goal; these effects were particularly strong for 

women. Students in classroom with teachers who rated computational thinking 

more highly also showed greater maintenance of positive attitudes towards 

programming.  

Originality/Value: While there is a growing body of literature regarding curricular 

interventions that provide computational thinking learning opportunities, this study 

provides a critical insight into the role that teachers may play as a potential support 

or barrier to the success of these curricula. Implications for the design of 

professional development and teacher educative materials that attend to teachers’ 

instructional goals are discussed.  

 

Keywords: computational thinking, robotics, programming, goals, teacher learning 
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Introduction 

Computer science education is now widely considered to be an integral part of a well-

rounded K-12 science, technology, engineering and mathematics (STEM) education. In the 

United States, the Computer Science for All initiative urges that computer science (CS) learning 

opportunities be provided not just within specialized elective classes or after-school clubs, but 

also in general education classes that offer these experiences to every student (Smith, 2016). In 

part, this policy shift is driven by a growing need for some base level of competence in 

computing for students to remain competitive in a job market that increasingly requires 

computational knowledge and skills, regardless of career trajectory. The U.S. Bureau of Labor 

Statistics (2017) predicts that the fastest growing careers in the coming decade are likely those 

that will require some degree of computational literacy, and the ability to use computers and 

programming logic to solve problems in a variety of applications. Educational researchers have 

sometimes used the term Computational Thinking (CT) to describe this particular 21st century 

skill. A canonical and complete definition of CT remains unsettled in the literature, leading some 

to advocate for the pragmatic approach of identifying core and peripheral concepts of CT; core 

aspects typically include decomposing problems, designing algorithmic solutions, and 

abstracting those solutions to multiple contexts (Voogt et al., 2015). Therefore, while many 

definitions of CT exist, most emphasize the importance of drawing on heuristics from the field of 

computer science to solve problems, and applying the knowledge and skills of computer science 

to problem solve across a variety of contexts and subjects (Barr and Stephenson, 2011; Wing, 

2006).  

Educational psychologists have studied the possible cognitive benefits of using computer 

science in K-12 to develop generalizable problem solving skills like computational thinking for 
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decades (Klahr and Carver, 1988; Pea and Kurland, 1984). In particular, specific computational 

thinking concepts from computer science such as “commands execute in sequence”, “conditional 

statements determine if and when to pass control of the program to a new set of commands” and 

“programs repeat the commands a set number of times or until a condition is met” may be 

generalizable across programming languages and contexts . However, still relatively little is 

known about particular pedagogical practices that might be linked to effective instruction in this 

class of generalizable computational skills. 

Robotics is one field that has been studied by educational psychologists as a learning 

environment that could potentially provide authentic opportunities to learn generalizable 

computer programming skills in an applied setting (Grover and Pea, 2013). Relatively recent 

advances in the design of educational technologies, informed by research in the learning 

sciences, have shown promise in providing students with generative learning experiences that 

may help develop the generalizable programming knowledge and skills prioritized by initiatives 

like CS for All (Lye and Koh, 2014). For example, block-based graphical programming 

languages can reduce syntax errors, allowing novice programmers to focus on the logic of their 

programs control structure (Kelleher and Pausch, 2005; Robins et al., 2010). Specific to robotics 

educational curricula, virtual simulations such as those used in the current study can reduce the 

mechanical errors often introduced by physical robots, thereby reducing the cognitive load of 

beginning programmers. Such simulated virtual curricula have been proven to teach 

programming as well as physical robotics, but more efficiently (Liu, Schunn, et al., 2013). 

Additionally, there is emerging evidence that certain features of these virtual robotics learning 

environments may be associated with measurable gains in generalizable Computational Thinking 

knowledge and skills (Witherspoon et al., 2017, 2018).  
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In the context of CS for All, educational robotics programs present themselves as a 

convenient option for school districts aiming to take up this initiative. In the last few decades, 

robotics programs have become almost ubiquitous in middle schools and high schools, both in 

elective after-school programs and more recently in compulsory education as the required 

technology becomes more broadly affordable (Melchior et al., 2005). However, in many K-12 

settings, technology-rich programs like robotics are implemented within Technology Education 

(“Tech Ed”) departments, which have historically focused on vocational training in specific and 

often localized industrial technologies, and are taught by teachers with varied training and 

experience in computer programming (Shields and Harris, 2007). Teachers in these classrooms 

often hold a broad range of teaching certifications, from Business, Computer and Information 

Technology to Career, Technical and Agricultural Education, and most teachers who are tasked 

with teaching robotics are unlikely to have received specific professional development targeted 

towards teaching either CS or CT (Ericson et al., 2008; Stephenson and Gal-Ezer, 2010). As use 

of robotics for teaching CT expands, limitations in teacher expertise may act as a bottleneck on 

positive learning outcomes.  

The Critical Role of Teachers 

It is well established that teachers play a critical role in student learning and attitudes; 

however, a variety of mechanisms may mediate these effects in technology-rich environments. 

Generally speaking, teacher beliefs about pedagogy and content interact with the written 

curriculum to determine ways that instructional materials are implemented, often creating 

disparities between curriculum as designed and curriculum as enacted (Remillard, 2005). 

Particularly in technology-rich environments, external barriers such as lack of training and 

hardware or software resources, and internal barriers such as confidence with the material, 
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valuation of technology, and beliefs about how students learn, could inform how teachers 

interpret and enact curriculum (Ertmer et al., 1999). Teachers are known to vary greatly in their 

understanding of CT and their attitudes towards integrating it into their classrooms, but CT 

educational opportunities are often limited to preservice computer science teachers (Yadav et al., 

2014). Further, inquiry and project-based STEM reform curricula like those often found in 

robotics, which aim for students to construct knowledge through largely self-directed 

exploration, require substantial shifts in teaching practice from traditional, direct instruction 

methods (Schneider and Krajcik, 2002). Therefore, it is likely that large variance exists in the 

particular curricular focus and pedagogical approach to CT instruction across robotics programs, 

as well as in learning outcomes for students. 

In addition to influencing achievement, variation in the way curricular materials are 

presented in robotics classrooms may also influence another important outcome of CS for All: 

students attitudes towards programming (Witherspoon et al., 2018). Maintaining students 

motivation to engage in programming activities may be particularly difficult in non-elective 

classrooms (e.g., in middle schools that require all students to take a course in technology 

education); research suggests that overall student valuation of STEM subjects tends to decline 

beginning in the middle school years (Wigfield and Eccles, 2000). However, it is possible for 

well-supported activities in middle school to maintain individual interest levels, which can 

predict long term, self-generated engagement through college (Harackiewicz and Hulleman, 

2010; Hidi and Renninger, 2006). Other attitudinal interventions that can be linked to pedagogy, 

such as identity development through engagement in authentic tasks of the discipline, and 

fostering students beliefs about their ability to do programming, can also predict students 

achievement and continued participation in CS majors and careers (Collins, 2006; Engle, 2006; 
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Lent et al., 2016). Therefore, examining students’ attitudinal responses to different pedagogical 

approaches while using a robotics programming curriculum could also offer important insights 

into effects on both students’ achievement and persistence.  

Teacher Goals 

 Understanding teachers’ instructional goal setting could provide one useful framework 

for predicting how teachers activate resources in ways that differ from the designed curriculum. 

By “instructional goal”, we mean a specific statement that expresses what students should learn 

in the language of a particular discipline, and is situated within a student-driven model of how 

learning progresses (Stein and Meikle, 2017). Teachers’ goals that are explicitly stated and 

refined into sub-goals at the lesson planning stage may improve the design of instructional 

activities that increase student achievement (Hiebert et al., 2017). Research has also suggested 

that instructional goal setting may be an emergent process that is responsive to a particular 

context (Aguirre and Speer, 1999).  

In learning environments like Tech Ed classrooms, where a relatively recent shift in focus 

to computing technology has led to the acceptance of a broader variety of teacher certifications, 

teacher rotation between multiple topical units, and a range of new tools and curricula, 

departmental goals can often be complex and ill-defined. It is likely that Tech Ed teachers hold 

multiple instructional goals simultaneously, and that those may at times conflict with the written 

curriculum, determining which goals are implemented in the classroom (Davis, Janssen, & Van 

Driel, 2016). Therefore, rather than circumventing these challenges with “teacher-proof” 

curricular materials, it is necessary for curricular designers to consider curricular enactment as a 

“local phenomenon that arises as a result of a number of factors, including…teachers’ goals, 

local constraints, and teachers’ pedagogical values” (Drake and Sherin, 2006). Curriculum 
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developers aiming to teach CT may benefit from understanding the goals endorsed by Tech Ed 

robotics teachers implementing their curriculum, to better provide strategies to deal with 

potentially competing goals. Additionally, understanding Tech Ed robotics teachers’ 

instructional goals could aid in the design of professional development that ensures all teachers 

have the knowledge and skills needed to align their instructional activities with higher level 

curricular goals. 

Therefore, while robotics curricular materials may be designed with intent to provide 

opportunities to learn Computational Thinking, these goals are often altered by teachers on the 

ground during moment-to-moment interactions with students. Particularly, in-service Tech Ed 

robotics teachers may hold alternate goals for their classrooms based on past experiences (i.e., 

general goals about problem solving vs. specific goals about computational thinking), and under 

the pressure of a complex and novel learning environment may be more likely to revert to prior 

pedagogical practices that are more familiar (i.e., focusing on performance outcomes like 

building the physical robot vs. learning outcomes like understanding computational concepts). 

This variation in goals can lead to variation in student learning by classroom, even when teachers 

have relatively similar experience, teach in similar learning contexts, and are using the exact 

same curricular materials.  

A better understanding of the importance teachers place on the different goals they have 

in these classrooms may help predict when and how these differences in enactment may 

manifest, and the effect that they have on student learning. Importantly, this information will be 

useful for curriculum designers to account for in development of teacher instructional materials 

and professional development. In this study, we examine how teachers’ ratings of the importance 

of instructional goals around CT in middle school robotics classrooms are related to student 
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learning of CT.  Specifically, we were interested if we would find differences based on CT 

instructional goals for Tech Ed teachers using the same virtual robotics programming 

curriculum, suggesting that these goals may be contributing factors to discrepancies in enactment 

that produce variation in students Computational Thinking learning opportunities. 

 

Methods 

Sample 

We examined the development of computational thinking in robotics classes in which all 

student in the school were enrolled, within schools across multiple regions of the United States. 

All human subjects research received Institutional Review Board (IRB) approval prior to the 

commencement of the study. The analyses presented here examine a sample of N=206 middle-

school aged students (Mage=12.3, SDage=1.1) within classrooms in four school districts, focusing 

on teachers with clearly differentiated instructional goals (described below). Students in this 

sample predominately identified as White (72%), with multi-racial (18%) and Asian (6%) 

making up the next two largest groups; the rest of the students either answered “Other”, “I don’t 

know” or were from a variety of groups (e.g., Indian/Middle Eastern, Native American/Pacific 

Islander) that each made up less than 1% of the data. Unlike elective robotics classes which are 

often predominately male, robotics classrooms in which all students in the school were enrolled 

consisted of a relatively evenly split by self-identified gender (51% female). Many of the 

students in these courses (69%) had some prior experience with robotics before, but the majority 

of students (77%) were engaging with this particular virtual robotics curriculum for the first 

time.  
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In addition to student assessments, we also distributed multiple rounds of weekly surveys 

to N=10 teachers across the US, which asked them to rate their instructional goals for their 

classes on a weekly basis. Overall, our response rate from the teacher surveys was about 47%. 

All of the responding teachers had earned a Master’s degree, were certified in a range of 

specialties closely related to Technology Education (e.g., Business, Computers & Information 

Technology; Career and Technical Education, Technology Education), and had a relatively high 

number of years of teaching experience overall (Myears=12.6, SDyears=6.0). Additional details on 

the four teachers selected for further analysis are presented in a later section. 

Curricular Materials  

The robotics curriculum used here, developed by Carnegie Mellon University and 

Robomatter, involves a sequence of lessons in robotics programming utilizing a visual 

programming language, ROBOTC Graphical (see Figure 1A). On average, instruction with the 

curriculum ran for about 10 weeks, and included 24 mini-lessons across 4 units including topics 

both specific to robotics (i.e., basic movement, sensors, repeated decisions) as well as core 

computational thinking concepts (i.e., abstraction, decomposition, systems thinking). Earlier 

versions of a similar virtual robotics curriculum have been reported on in previous studies (see 

Witherspoon et al., 2017, 2018). The curricular materials incorporate elements which were 

designed to support efficient learning and transfer of generalizable computational skills: 

procedural scaffolds (worked examples, guided videos), dynamic mini-challenges, visual 

programming language, and Robot Virtual Worlds (RVW), a virtual robotics programming 

environment designed to emphasize the programming aspects of robotics, while maintaining 

student interest and engagement (see Figure 1B). These features reflect a constructionist 
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approach to instruction, in which learners build increasingly complex programmed solutions and 

construct an understanding of the requisite programming principles (Papert, 1980).  

First, to provide a shared context for each unit, students are provided with a short 

introductory video to frame the subsequent lesson activities. These videos are learner-paced and 

present visual support together with a conversational narrative around the key concepts, to 

reduce extraneous processing and foster generative processing (Mayer, 2008). Partial scaffolding 

(Puntambekar and Hubscher, 2005) is introduced by way of questions to check students 

understanding, step-by-step instruction on a conceptually related robotics programming activity, 

and a brief post activity quiz to assess understanding, followed by the open-ended application of 

these skills within a game-like challenge in the virtual programming environment, allowing 

students to apply their knowledge more independently.  

Students can iteratively test modular programmed solutions with simulated VEX IQ 

robots in a three-dimensional virtual platform. Finally, these solutions are “remixed and reused” 

(Brennan and Resnick, 2012) to complete more complex virtual challenges, in which learners 

must apply their previous programming knowledge to problem solving tasks that foreground 

computational thinking principles like abstraction, decomposition, and systems thinking. To 

solve these challenges, students used a programming language called ROBOTC Graphical (see 

Figure 1A) to develop programmed solutions. ROBOTC Graphical has a visual programming 

language interface, intended to allow students to focus on the broader logic of programming 

while deemphasizing the particular syntactic requirements of more traditional programming 

languages. 
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  (A)               (B) 

Figure 1. Samples of the ROBOTC graphical programming language (A), and a RVW virtual 

robotics programming task (B). In this task, using if/else statements, loops, and sensors, students 

program the robot to sort flags onto the left or right conveyor belt based on the color, which is 

dynamically assigned. 

 

By representing robotics challenges in a virtual environment, this curriculum offers 

affordances over physical robotics programs by reducing the potential frustration and distractors 

of mechanical error, enabling students to focus on higher-level computational principles of 

programming. While physical robots may have some advantages, a study by Liu et. al (2013) 

found that students using an earlier version of this technology achieved learning gains in 

programming content equivalent to students using physical robots, but in significantly less time. 

Further, simulating robot movement reflects an authentic engineering practice (see Michel, 

2004), and virtual robots are also less expensive than physical ones, allowing the benefits of the 

curriculum to reach a broader population where the costs of physical robotics curricula can be 

prohibitive.  
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Measures & Procedures 

Teacher instructional goals. In order to understand which instructional goals teachers 

were emphasizing in these classrooms, we distributed a weekly online survey to teachers 

throughout the semester in which they were using the curriculum. These surveys were developed 

through pilot studies consisting of pre-lesson goal setting activity conducted with a small group 

of local robotics teachers using the same virtual curriculum. From these pilot studies, we noted 

that only some teachers were setting goals related to core CT concepts that were included in the 

curriculum. These teachers included goals such as “students learn that in a conditional loop, the 

condition determines when/how long the commands repeat,” while other teachers identified 

goals such as “students will complete lesson activities 1-3”. The resulting surveys used in the 

current study asked teachers to rate the importance of a set of goals focused on specific 

computational thinking learning outcomes (e.g. “During class this week, my goal was that 

students would learn…that programs execute commands in sequence”) on a 3-point Likert scale 

from (1) Least Important to (3) Most Important (see Appendix A for sample teacher goals 

measures). Additionally, teachers were asked to provide demographic information such as level 

of teaching experience, teaching certification, and prior exposure to the curriculum. These 

surveys were purposefully kept relatively brief to promote survey completion.  

Overall, teachers were given nine opportunities to respond to the survey over the course 

of a semester. From the total group of ten teachers who received the survey, four teachers 

provided a sufficient number of responses (n ≥ 5) across all items to generate a reasonably 

robust measure of their average rating of each goal, and so these four teachers were purposively 

selected for additional analysis. The four teachers selected for final analysis were all white, male, 

and had a similar level of teaching experience (Myears=13.8, SDyears = 3.0). Overall, teachers 
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tended to rate most goals as at least moderately important; based on the distribution of teachers’ 

responses, we used a median split to group them into two categories: “Low CT”, consisting of 

two teachers who had an average overall rating of computational thinking goals of 2.5 or below 

(Mrating=2.1, SDrating=0.3) across 11 combined ratings, and “High CT”, consisting of two teachers 

who had an average overall rating of computational thinking goals of 2.5 or higher (Mrating=2.8, 

SDrating=0.4) across 12 combined ratings. In other words, teachers who typically rated the goals 

as only moderately important versus teachers who typically rated the goals as most important; 

this difference in ratings was a large effect size (Cohen’s d= 2.2). Both High CT teachers held 

Technology Education certifications, while one Low CT teacher held a Business, Computers and 

Information Technology certification, and the other held both Career & Technical Education and 

Biology certifications. In each group, one teacher reported having approximately 4 years of 

experience with the curriculum, while the second teacher in each group was using the curriculum 

for the first time.  

Computational thinking assessments. After grouping the four teachers based on their 

rating of CT goals, we then examined the pre- and post-test scores of students in each of these 

teachers’ classrooms, to see if there were significant differences in learning as measured by the 

assessments of computational thinking for students in Low CT teachers’ classrooms (n=57) and 

students in a High CT teachers’ classrooms (n=149; see Table 1).  

The primary outcome measure was an externally-created computational thinking 

assessment used as a post-test. It consisted of five multiple choice items that were adapted for a 

robotics context from the Exploring Computer Science - Principled Assessment of 

Computational Thinking (PACT) (Goode and Margolis, 2011). These assessments were 
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specifically created using evidence-centered design to assess knowledge, skills and attributes 

associated with computational thinking practices1. 

An alternative assessment was needed that could be used to verify equivalence of both 

general programming skills and computational thinking skills across classes before instruction, 

as well as avoid test-retest effects. We had previously developed such an assessment that 

contained programming and computational thinking items (see Appendix B for sample 

assessment items). These items were developed to target three core programming concepts 

common across a range of accepted frameworks of programming and computational thinking; 

sequences, conditions and iteration (see College Board, 2016; Computer Science Teachers 

Association, 2016; Bienkowski et al., 2015) and have been shown in prior work to be a reliable 

measure of students programming and computational thinking knowledge (see ).  

Our school district partners requested that we reduce class time required for an 

assessment that is only establishing equivalence at the class level. Therefore students received 

one of four randomly assigned sections of the computational thinking assessment at pre-test; 

each of the four sections of the pre-test consisted of five multiple choice items each. The overall 

average Armor’s q was θ = .44 for the pre-test, and θ = .74 for the post-test2. Relatively low theta 

values are common for relatively short assessments that are intended to cover a range of 

concepts. When corrected to account for possible attenuation of correlation caused by the 

measurement error, the pre-post correlation was ρ = .60 (see Fan, 2003). 

Attitudes towards programming. Additionally, students also completed a short attitudinal 

survey prior to the pre and post-test exams, with 12 items that asked students about their interest, 

                                                        
1 Sample items can be found at https://pact.sri.com/resources.html 
2 Armor’s q and polychoric correlations are similar to Cronbach’s a and Pearson’s correlations, respectively, but are 
more appropriate for binary data (item correct vs. item incorrect; see Panter et al., 1997) 
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competency beliefs, and development of identity in computer programming (see Appendix C for 

sample survey items). Different scales were used across these items as a strategy for slowing 

respondents down and getting them to read each item more closely, and to allow for different 

measures of intensity (i.e., frequency of experiences vs. strength of endorsement). Interest was 

gauged through four items (e.g., “I wonder about how computer programs work”, Cronbach’s 

a=.87), rated along a four-point Likert scale (e.g. “Never” to “Every Day”).  Four items gauged 

level of identity as a programmer (e.g., “My family thinks of me as a programming person”, 

a=.88), rated along a four-point Likert scale (e.g. NO! to YES!). Competency beliefs were 

gauged through four items (e.g., “I am sure I could do advanced work in programming”, a=.83) 

rated along a six-point Likert scale (e.g. “Strongly Disagree” to “Strongly Agree”).  Based on a 

prior pilot survey, which suggested that students struggled to accurately rate their competency 

prior to obtaining some knowledge of the content, only these items were measured using 

retrospective pre- items (i.e., students were asked at post to rate both their competency at the 

beginning of the curriculum and their competency now; see Pratt et al., 2000).  Attitudinal 

measures at both pre and post were significantly correlated with each other, but not so high as to 

be redundant measures. For ease of interpretation across these different scales, prior to analyses 

all attitudinal measures were converted to a proportion, with the lowest rating as 0 and the 

highest rating as 1. 
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Table 1.   

Descriptive statistics of student and teacher background characteristics and pre-test levels for 

High CT and Low CT classroom groups (SD in parentheses), along with the t-test contrast of the 

pre-test group means and the 95% CI of the difference in means for each measure. 

 

Measures 
Teacher Goal Groups 

t 95% CI CT Low 
(N=57) 

CT High  
(N=149) 

Teacher characteristics†     
Teacher rating of CT 2.1 (.30) 2.8 (.38) - - 
Teacher exp. (years) 14.0 (1.4) 13.5 (4.9) - - 

Student characteristics     
Student robotic exp. 33% 30%  -0.5 -18%, 10% 
Student CS2N exp. 9%  28%  -2.9** -31%, -6%  
Student age (years) 11.7 (1.2) 12.5 (1.0) -5.2** -1.2, -0.6 

Student assessments     
Pre-test 2.2 (1.2) 2.3 (1.1) 0.7 -0.21, 0.46 

Student surveys     
Competency Beliefs .53 (.20) .51 (.20) 0.6 -0.04, 0.08 
Identity .59 (.13) .52 (.19) 1.5 -0.02, 0.17 
Interest .66 (.15) .60 (.19) 1.2 -0.04, 0.15 

Note. **p<.01 
†For teacher data, a dash (-) is shown in place of t-statistics and 95%CI because of 
low teacher sample size 

 

Analyses 

Average pre-test scores of students in the two High CT teachers’ classrooms were 

compared against the average pre-test scores of students in the two Low CT teachers’ classrooms 

using a simple t-test, as well as other teacher and student characteristics to establish that the High 

CT and Low CT groups were comparable. Post-test scores were analyzed using ANCOVA, 

comparing differences in average post-test scores in the two groups while controlling for the pre-

test score, age, and curricular experience, to increase statistical power by accounting for 

individual differences in students’ pre-tests, and to account for slight differences in pre-group 
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composition on those variables. Finally, motivation variables were also measured using an 

ANCOVA of post-survey scores, controlling for pre-survey scores, age and curriculum 

experience. 

 

Results 

We first examined whether or not initially the two groups of students in the Low CT and 

High CT classrooms were relatively comparable on the assessment of computational thinking.  A 

Levene’s robust test for homogeneity of variance showed that there were no significant 

differences in variance between the two Low CT and High CT groups at pre-test, F(1, 204)<1, 

p=.79. Further, no significant differences were found in pre-test scores (t =-0.75, p=.45, d=0.11), 

between students in a classroom taught by a teacher with a Low CT rating (Mscore =2.2, 

SDscore=1.2) or students in a classroom taught by a teacher with a High CT rating (Mscore=2.3, 

SDscore=1.1; see Figure 1).  

Critically, on the post-test, being in a classroom taught by a High CT rating teacher was 

associated with significantly higher scores (Mscore=2.6, SDscore=1.3) than being in a classroom 

with a teacher who gave a Low CT rating (Mscore=2.1, SDscore=1.4; t= -2.67, p<.01, d=0.41; see 

Figure 2). Thus, we have evidence of differential gains by teacher goals even when the same 

curriculum is being used. 

However, the two groups were not fully equivalent by background. To account for small 

differences found in age and prior experience with the curriculum between the Low CT and High 

CT groups, an ANCOVA was conducted on post-test scores, controlling for pre-test scores, age, 

and prior experience with the curriculum. Even with these controls, students in the High CT 

group showed higher mean post-test scores than students in the Low CT group, F(4,198)=2.90, 
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p=.06, although these differences were no longer statistically significant, and the effect size was 

reduced to d=0.29, meaning the two distributions overlap approximately 88%  (see Figure 2). 

Importantly, aligning with the priority of CS for All in a robotics classroom in which all 

student in the school are enrolled, our results also show that only in High CT classrooms, girls 

had a significantly higher score [F(4,141)=3.95, p<.05, d=0.30] on the post-test (Mscore=2.8, 

SEscore=0.1) than boys (Mscore=2.4, SEscore=0.2), even when controlling for pre-test scores, age 

and curriculum experience. Thus, while in our sample significant differential gains in CT 

between the two groups were not found overall when including these additional controls, having 

a robotics teacher that endorsed CT goals shows significantly higher learning gains for women 

relative to men. 
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Figure 2.  Differences between student scores by teacher rating of computational thinking goals 

(with SE bars), on A) pre-test and B) post-test, and C) post-test with controls for pre-test, age and 

prior experience. 

 

For the final set of analyses, we examined differences in attitudinal measures for students 

in classroom with Low or High CT teachers.  Overall, at pre- there were no significant 

differences between the two groups in Competency Beliefs (t = 0.62, p=.54), Identity (t = 1.2, p 

=.23) or Interest (t = 0.70, p = .48).  At post, an ANCOVA revealed that while there were no 

significant differences between the two groups in Competency Beliefs [F(4,192)=1.22, p=.27, d 

= .16], the High CT group had significantly higher post-survey scores in both Identity 

[F(4,108)=6.73, p<.05, d=0.59] and Interest [F(4,108)=10.88, p<.01, d=0.71], when controlling 

for pre-survey, age and curriculum experience (see Figure 3). Importantly, these higher scores 

represent a relative maintenance of programming Identity and Interest from pre-test scores for 

those students in the High CT group, while students in the Low CT group largely experienced 
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significant declines in both programming Identity (t=-2.81, p<.05, d=.41) and Interest (t=-3.74, 

p<.01, d=.46). 

 

 

 

Figure 3. Post-motivation by teacher rating of computational thinking goals (with SE bars), 

controlling for students’ pre-motivation scores (mean shown as dotted line), age, and curriculum 

experience. 

 

Discussion 

Overall, our results show that when teachers endorsed computational thinking as a critical 

instructional goal, their students had gains in computational thinking and also had greater 

maintenance of positive attitudes towards programming. Particularly, girls in mixed-gender 
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outperformed boys, suggesting that this re-framing of the instructional focus of these 

traditionally male-dominated learning environments may help support achievement in 

programming for young women. Importantly, these differences in outcomes were found across 

teachers with similar experience and who were implementing the same virtual robotics 

curriculum. These findings suggest the key role instructional goals play in the development of 

Computational Thinking, similar to the mathematics education literature which propose that 

teachers goals act as a “north star”, guiding a variety of instructional decisions (Stein and 

Meikle, 2017). Further, this study lays the foundation for future work examining how the diverse 

goals held by educators who teach Computational Thinking, in a broad range of learning 

environments, may determine how designed curriculum materials are adapted during curricular 

enactment. While the current study did not examine the specific curricular adaptations that were 

made, this study makes clear that an understanding of the instructional goals endorsed by the 

teacher is a significant contributor to student learning outcomes, and one that must be accounted 

for in the design of curriculum. Including teacher educative materials that provide insight into 

the design of lesson activities, identify aspects of enactment that are critical to the learning goal, 

and develop own teachers’ capacity to design CT lessons, may help teachers avoid adaptations 

that reduce opportunities to learn computational thinking (Brown and Edelson, 2003; Davis and 

Krajcik, 2005).  

Additionally, these findings suggest a need for ongoing professional development support 

for teachers that not only provides instruction on the use of the materials, but also explicitly 

attends to the goals of the curriculum, and potential areas where these goals may come into 

conflict with goals held by the teacher. Prior research has suggested that goal-coherent 

professional development can play a key role in reducing ambiguity and uncertainty and 
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supporting teachers sensemaking around new curricular initiatives where conflicting goals may 

exist (Allen and Penuel, 2015). This may be particularly important in the expanding range of 

educational programs like robotics in Technology Education environments, which are often 

tasked with incorporating computer science and Computational Thinking into their ongoing 

curriculum. The demands of these new initiatives often represent a large shift from the prior 

pedagogical approaches and instructional goals teachers in these spaces are familiar with 

(Schneider and Krajcik, 2002). Without adequate attention paid to the ways in which these goals 

may diverge from those already in place, initiatives like CS for All and innovative curricular 

reforms may experience a bottleneck in their ability to see the desired gains in student learning. 

Limitations 

The inferences that can be drawn from this study are limited by a number of factors.  

First, the analyses conducted are correlational in nature and there was no random assignment to 

experimental condition. Therefore, we cannot be certain whether the combination of exposure to 

the curriculum and the teacher instructional goals are in fact causing the observed differences in 

scores, or if other unobserved factors may be contributing to the larger gains for students in the 

High CT group. In a related way, due to our limited student and teacher sample sizes, analyses 

were unable to account for nesting within schools or classrooms. We are therefore uncertain that 

there are not school-level differences that may be contributing to differences in student gains. 

Another limitation with the current data was the relatively low correlation between our pre- and 

post-tests due to the practical necessity of a limited number of assessment items. The error 

introduced when these imperfectly correlated pre-tests were included as a control resulted in our 

statistical tests for knowledge gains being underpowered. 
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Second, due to the distributed nature of the classrooms around the US, we did not have 

observational measures of instruction, and therefore we do not know what teachers did to 

produce the changes in outcome. We also were unable to interview participating teachers to 

uncover how prior teacher certification programs and professional development opportunities 

may have influences their instructional goals. However, pilot interviews with local robotics 

teachers using this virtual curriculum indicate that although all teachers identified “problem 

solving and learning how to think” as core instructional goals, only those who selected CT goals 

similar to those in our surveys would enact lessons in ways that emphasized CT relevant features 

of the curricular activities. For example, while enacting an activity in which students program a 

robot to move a row of boxes, a teacher who selected a student learning goal that “conditional 

statements determine when to pass control of the program to a new set of commands” directed 

students’ to think about using conditions to generate a program that allows the robot to account 

for different distances between the boxes. Future research should explore the ways in which 

teachers introduce activities, guide class discussion, and respond to student questions/struggles 

as possible vehicles of the effects of teacher goals on student learning outcomes (Stein et al., 

2008; Stein and Meikle, 2017).  

Conclusion 

While prior studies using a similar virtual robotics curriculum have demonstrated that 

students may gain generalizable programming knowledge and skills from these learning 

experiences, here we show that even within similar classrooms using the exact same curriculum, 

differences may appear, and that teachers’ instructional goals may be a significant contributor to 

these differences. Future work would benefit from gathering a larger teacher sample which 

would allow us to statistically account for different contextual factors, such as nesting effects 
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within different schools and how certification may play a role in robotics teachers’ 

conceptualization of their instructional goals. Further, additional development of the survey of 

instructional goal setting, and qualitative interviews and classroom observations with teachers, 

could provide additional insight into the mechanisms through which these goals manifest in 

classroom activities, how teachers conceptualize goals around computational thinking in the 

classroom, and what framing of these goals may be most productive for teaching students 

generalizable programming knowledge and skills. 
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Appendix A. Sample teacher goal items 
 
Rate the following goals as Least Important to Most Important to your class this week.  Then, 
indicate how often you spent time during class on the following topics.  
  
You do not need to marks goals that are not applicable.  If there are other goals you had that are 
not listed, use an "Other" box and briefly describe them.  
  
"During class this week, my goal was that students would learn..." 
 
 Least 

Important  Important Most 
Important 

That programs execute each command in order 
from top to bottom, unless otherwise directed. O O O 

That programs use conditional statements to 
determine if and when to pass control of the 
program to a new set of commands. 

O O O 

That programs will repeat the commands inside a 
looping structure either a set number of times, or 
until a condition is met. 

O O O 
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Appendix B. Sample assessment items 
 
Table A1. An overview of the dimensions and programming concepts in the bank of items used 
for the pre-assessment. 
 

Dimensions Items Concepts  Items Example content 
Robot 
Programming 

10 Sequences 3 What sequence of movements will get the 
robot to the end of the maze? 

Conditions 4 At what distance sensor value will the 
robot stop moving? 

Loops 3 Which actions will the robot repeat if the 
bumper sensor is pushed in?  

Computational 
Thinking 

10 Sequences 3 Will the removal of this line of the program 
change the display on a heart monitor? 

Conditions 4 At what combination of blood pressure 
readings will this heart monitor emit an 
alarm? 

Loops 3 Which of these two programs will identify 
the correct blood pressure in the least 
number of iterations?  
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Sample robotics programming item 
 
Take a look at the program plan below. How will each individual line of code be run once it is 
programmed? 
 
Line 1: Move forward for 5 seconds, at 100% speed 
Line 2: Turn left 1 rotation, at 50% speed 
Line 3: Move forward for 5 seconds, at 50% speed 
Line 4: Turn right 1 rotation, at 50% speed 
 
Select one: 

O Only the first command runs 
O The commands are run in order according to their line numbers  
O All commands run at once 
O The commands are run in a random order 

 
 
Which of the following is true about conditions? 
 
Select one: 

O They must always end up either true or false 
O They represent decision-making logic in a program 
O You can write a condition that is always true or always false 
O All of the above 
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Sample computational thinking item 
 
Scenario: Personal Fitness Devices 
Personal fitness devices use electronic sensors to continuously monitor and track data about a 
user’s heath such as steps taken, calories burned, and heart rate.    
 
The BP-Sure company is developing a new feature for their fitness device that also measures the 
user’s blood pressure, using sensors that detect a user’s heartbeat. When the heart pushes blood 
through the arteries, the device records "Pressure 1", and when the heart is resting, the device 
records “Pressure 2”. 
 

 
 

The device can determine if a user’s blood pressure is in the Normal, Medium or High range, by 
comparing blood pressure readings to the chart below. 
 
Use the chart below to answer questions #19, #20 and #21. 
 
 
 
 
 
 
A new programmer on the team writes the following series of steps to determine the display 
when a user is in the “Normal BP” range: 
	
(Line	1)	 IF (p1 <= 120 AND  
(Line	2)	       p1 <= 121 AND  
(Line	3)	       p2 <= 80   AND 
(Line	4)	       p2 <= 81) 
(Line	5)	 THEN	set display = “Normal	BP”  
 
Which lines can be removed to make the code more efficient, while not changing the code 
output? 
 
Select one: 

O Line 1 and Line 4 
O Line 2 and Line 3 
O Line 2 and Line 4  
O Line 1 and Line 3 

  

Blood Pressure  Pressure 1 (p1)  Pressure 2 (p2) 
Normal BP p1 <= 120 AND  p2 <= 80 
Medium BP 121 <= p1 <= 139 AND 81 <= p2 <= 89 
High BP  p1 >= 140  OR p2 >= 90 
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Appendix C. Sample survey items 
 
Sample competency belief items 
 

 

 

 
 
 

 “I am sure that I can learn programming.” 
 Strongly 

Agree 
Somewhat 

Agree Agree Disagree Somewhat 
Disagree 

Strongly 
Disagree 

       
With what I knew on the 
FIRST DAY of the 
course… 

O O O O O O 

 
With what I know 
TODAY… 

O O O O O O 

 “I could get an A on a programming assignment 
in class.” 

 Strongly 
Agree 

Somewhat 
Agree Agree Disagree Somewhat 

Disagree 
Strongly 
Disagree 

       
With what I knew on the 
FIRST DAY of the 
course… 

O O O O O O 

 
With what I know 
TODAY… 

O O O O O O 

 “I am sure that I could do advanced work in 
programming.” 

 Strongly 
Agree 

Somewhat 
Agree Agree Disagree Somewhat 

Disagree 
Strongly 
Disagree 

       
With what I knew on the 
FIRST DAY of the 
course… 

O O O O O O 

 
With what I know 
TODAY… 

O O O O O O 


