
Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

1	

Attending to structural programming features predicts differences in learning and motivation in a

virtual robotics programming curriculum

Eben B. Witherspooon1*, Christian D. Schunn1, Ross M. Higashi1, Robin Shoop2

1University of Pittsburgh, 2The Robotics Institute, Carnegie Mellon University

© Eben Witherspoon 2017. This is the authors submitted version of the following article:

Witherspoon EB, Schunn CD, Higashi RM, Shoop R (2018). Attending to structural programming
features predicts differences in learning and motivation. Journal of Computer Assisted Learning,
33(7), 1-14.

which has been published in final form at https://doi.org/10.1111/jcal.12219. This article may be
used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy
https://authorservices.wiley.com/author-resources/Journal-Authors/licensing-open-access/open-
access/self-archiving.html

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

2	

Abstract

Educational robotics programs offer an engaging opportunity to potentially teach core

computer science concepts and practices in K-12 classrooms. Here we test the effects of units

with different programming content within a virtual robotics context on both learning gains and

motivational changes in middle school (6th-8th grade) robotics classrooms. Significant learning

gains were found overall, particularly for groups introduced to content involving program flow,

the structural logic of program execution. Relative gains for these groups were particularly high

on items that require the transfer of knowledge to dissimilar contexts. Reaching units that

included program flow content was also associated with greater maintenance of programming

interest when compared with other units. Therefore, our results suggest that explicit instruction

in the structural logic of programming may develop deeper transferrable programming

knowledge, and prevent declines in some motivational factors.

Keywords: robotics, programming, learning, motivation, computational thinking

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

3	

Attending to structural programming features predicts differences in learning and motivation in a

virtual robotics programming curriculum

Introduction

Computer science (CS) is quickly becoming an essential part of core K-12 STEM

curricula, as schools attempt to prepare students for an expanding range of careers that require

substantial CS knowledge. Despite a decline in participation in the early 2000s, enrollment in

Advanced Placement CS classes are again on the rise, with 15% to 25% year-over-year increases

in students taking the AP CS A exam every year from 2011 to 2016 (The College Board AP

Data, 2016; Ericson & Guzdial, 2014). Policy initiatives like CS for All highlight the importance

of preparing all students to apply computer science skills within a wide variety of careers (Smith,

2016). Therefore, research on K-12 CS education should examine features of learning

environments that enable students to apply a conceptual understanding of CS to a variety of

contexts, and grow STEM interest, identity, and engagement for a wider range of students.

Educational robotics can provide engaging CS experiences to diverse students (Rusk,

Resnick, Berg, & Pezalla-Granlund, 2008). These experiences also support learning abstract

computer programming by using concrete external representations (Papert & Harel, 1991). Out-

of-school robotics activities like summer camps and club teams can also expand interest in

STEM careers (Hendricks, Alemdar, & Ogletree, 2012; Petre & Price, 2004). Overall,

introducing robotics curriculum into general education classrooms may help disseminate

programming to a broader population beyond those who self-select into robotics electives and

clubs.

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

4	

However, little is known about whether programming knowledge gained from these

activities is carried beyond the context of robotics. Further, relatively few empirical studies

examine whether educational robotics experiences can produce gains in both motivation and

programming knowledge (i.e., be fun and rigorous). In this study, we investigate what aspects of

a robotics programming curriculum may lead to transferrable knowledge that will prepare

students for a range of future CS-relevant careers. Further, we are interested in determining if

there is a relationship between curricular features and shifts in motivational factors, which may

also be relevant to persisting in CS learning experiences; namely, the development of higher

levels of students’ programming interest, programming identity, and their beliefs in their ability

to be successful in CS.

Teaching generalizable programming skills

Computational thinking, a term that has gained a great deal of attention in K-12 CS

education over the past decade, is broadly defined as “an approach to solving problems in a way

that can be solved by a computer…a problem solving methodology that can be transferred and

applied across subjects” (Barr & Stephenson, 2011). Consensus has not yet been reached over

the specific concepts that make up computational thinking. However, there is consensus that it

should involve very general programming practices such as algorithmic thinking and design

processes, which, as high-level practices, could be generalizable across contexts (Grover & Pea,

2013; Wing, 2006). Various organizations have suggested that more specific concepts and skills

of computer science such as iteration and task decomposition are fundamental in the

development of computational thinking; in this paper, we focus on particular fundamental

programming concepts and skills that are generally endorsed as important (see AP Computer

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

5	

Science Principles, 2016, Interim CSTA K-12 Computer Science Standards, 2016; Bienkowski,

Snow, Rutstein, & Grover, 2015).

The K-12 Computer Science Framework (2016) suggests that by 8th grade, CS students

should be learning to develop modular, generalizable algorithms that can produce a range of

outputs based on different inputs, and incorporate more complex control structures (i.e.,

conditions nested within loops). These build upon the basic concepts developed in elementary

school such as identifying “everyday” algorithms (i.e., steps for making a sandwich) and prepare

students for more advanced CS content in high school (i.e., recursion, arrays). In addition to

specific grade-level concepts, the Frameworks also emphasize core computational practices

across grade bands, such as decomposition of complex problems into smaller sub-goals, using

abstraction to functionalize their solutions, and troubleshooting programs to identify errors in

logic.

Aspects of general programming can be taught within a wide range of learning

environments, including robotics (Lye & Koh, 2014). Since the 1980s, cognitive scientists have

theorized that learning computer programming could develop students’ general problem solving

skills, yet few studies have been able to demonstrate empirical support for these claims (Dalbey

& Linn, 1985; Kurland, Pea, Clement, & Mawby, 1986; Pea & Kurland, 1984). Transfer of

knowledge and skills to other contexts is believed to be more likely if students understand the

underlying structural features of programming logic (i.e., which commands in a loop will be

repeated, when/if a conditional statement will execute), rather than more superficial rote

repetition of programming language features and syntax (i.e., when a semi-colon is needed to

indicate the end of a line; where to place brackets around loops; Palumbo, 1990; Salomon &

Perkins, 1987). For example, early studies involving the BASIC programming language showed

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

6	

that students were able to make more progress towards developing problem solving skills that

could be applied to learning other programming languages when their instructor focused

explicitly on program design (e.g., task decomposition, debugging processes), rather than

language-specific features (Linn & Dalbey, 1985). Explicit attention to the structural logic of a

program (i.e., control structures and program flow) could organize programming knowledge into

schemas, which make it easier to recognize similarities in novel tasks and select an appropriate

solution.

Recent advances in educational technologies have revitalized research on the potential

generalizability of programming knowledge and skills. Visual programming languages like

Scratch are thought to reduce the cognitive load for novice programmers by reducing superficial

syntactic errors, freeing learners to focus on the structural logic of code (Kelleher & Pausch,

2005; Robins, Rountree, & Rountree, 2010). For example, rather than requiring specific

punctuation to denote a looping structure, visual languages embed these features within graphical

blocks, using colors and other cues to easily represent these functions (see Figure 1). Particularly

important within the K-12 context, these scaffolds could make programming more approachable

for students with relatively little prior programming experience (Repenning, Webb, & Ioannidou,

2010).

(Figure 1 here)

To develop these transferable knowledge structures, some research suggests that

providing a variety of examples could help novices to induce more general rules that develops an

adaptive rather than routine expertise (Barnett & Koslowski, 2002; Hatano & Inagaki, 1986).

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

7	

Multiple examples may be particularly effective for transfer when there are variations in the

superficial features of a problem, but no change in the underlying structural features that are

functionally related to the task outcome (Gick & Holyoak, 1983). Given the high level of

perceptual features in robotics contexts (i.e., narrative task features, mechanical robotics parts)

that might limit transfer, programming transfer from robotics might be especially dependent

upon dynamic programming tasks that change superficial features of the problem (i.e., layout of

a maze, arrangement of blocks to be moved) before each attempt, in order to develop students’

ability to recognize the underlying solution requirements.

In sum, advances in educational technology and an understanding of its pedagogical

implications for programming could allow curriculum designers to develop lessons that better

scaffold problem solving expertise to support the generation of transferrable knowledge. In this

study, we examine students’ progress through a virtual robotics curriculum that introduces

dynamic problem solving tasks using a visual programming language, allowing them to focus on

the logic of programming structures that must be responsive to dynamically shifting task

features.

Motivating interest and maintaining competency beliefs

While developing a conceptual understanding of CS that can be applied within a variety

of contexts is important, students’ continued participation in CS-related careers is also likely to

require the development of motivational factors such as programming interest, identity as a

programmer, and positive beliefs about programming abilities. Robotics programs have been

heavily studied in out-of-school learning environments, which generally focus on extending

students’ existing STEM interests. By contrast, in-school robotics courses are less likely to have

self-selected populations of students with high STEM interest, and therefore may struggle to

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

8	

keep all students equally engaged in programming. Studies at the middle, high school, and

undergraduate level suggest that students’ interest in a topic can predict how they choose to

spend their free time, what courses they select, and what major they pursue (Harackiewicz &

Hulleman, 2010). However, early CS experiences that do not seem relevant to prior interests, or

reinforce negative stereotypes about CS careers, could deter students from choosing a CS major

in the future; these negative effects may be particularly strong for women (Beyer, 2014; Carter,

2006). For example, a study of middle and high school robotics teams showed that girls’

declining participation in programming activities was explained by a concurrent decline in

interest in programming (Witherspoon, Schunn, Higashi, & Baehr, 2016). To encourage long-

term participation in CS, K-12 general education robotics classes should aim to trigger

situational interest in novice programming students, while also deepening individual interest by

developing confidence in programming ability.

Providing opportunities for students to develop their identity as a programmer may also

be an important factor in encouraging continued participation in CS. Activities that provide

opportunities for “productive disciplinary engagement”, where students work on authentic

problem-solving tasks that require them to use the practices of a field, could develop students’

identity in ways that predict continued participation (Collins, 2006; Engle, 2006; Engle &

Conant, 2002). In a longitudinal study of persistence in science, high school students who had

opportunities to participate in communities of practice (Collins, 2006; Lave & Wenger, 1991)

were more likely to continue to consider a career in science (Aschbacher, Li, & Roth, 2010).

Levels of engagement and persistence in CS may also be closely associated with

students’ perceptions of both the difficulty of programming as a discipline, and their own

abilities (Bandura, 1989). Further, beliefs about ability in STEM domains have been shown to be

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

9	

more predictive of performance than both prior experience or outcome expectations; gifted

women may be particularly prone to under-confidence in those traditionally male-dominated

fields (Pajares, 1996; Zeldin & Pajares, 2000). However, exposing students to advanced content

can sometimes have the unfortunate side-effect of reducing student confidence levels because

they come to learn what competence in the domain actually involves; ironic tradeoffs between

actual ability development and perceived abilities can exist. Allowing students to experience

“small wins” at each step of the programming process could cause the perception of each overall

problem solving task to be less daunting, appear less demanding, and raise students’ perceived

ability level (Weick, 1984).

Overall, this suggests that interest and other motivational factors may play a significant

role in K-12 students’ persistence in CS activities. In addition to learning transferrable CS skills,

motivating all students in K-12 to continue to engage with a variety of CS learning opportunities

will be important for preparing students for the growing variety of CS-relevant careers.

Therefore, to determine the effectiveness of this curriculum in achieving these goals, in this

study we also measure participants’ development of programming interest, identity, and

competency beliefs.

Research questions

Our main research questions are twofold: First, is reaching more conceptually rich units

associated with larger overall learning gains in programming? Further, are learning gains found

within contextually distant transfer items? If so, this will help strengthen our claims that it is the

particular character of the tasks in later units that are driving knowledge transfer, and not simply

the repetition of more foundational concepts. Second, we aim to determine if participation in the

curriculum is associated with any significant changes (positive or negative) in motivational

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

10	

characteristics, particularly interest, identity, and competency beliefs. Effects on motivation is

also an important feature of a K-12 CS curriculum that aims to be effective in non-elective

learning environments (i.e., broaden participation at later levels).

Methods

Sample

The sample for this study consisted of N=136 6th and 8th grade students within seven

different robotics classes taught by three teachers across two schools in southwestern

Pennsylvania. The sample was predominantly White (78%) and relatively equally divided by sex

(Male = 52%, Female = 48%). Each participating teacher taught 2-3 sections of robotics using

the virtual curriculum and elected to be part of the study. Teachers were relatively comparable in

terms of level of training and teaching experience, all having received at least a four year

Bachelor’s of Science degree in Technology Education, as well as attending two professional

development sessions about the curriculum prior to implementation. All human subjects research

received Institutional Review Board (IRB) approval prior to the commencement of the study.

Participants in the study completed different levels of the curriculum; some finished only

the Basic Movement unit (n=39, Mage=11.42, SD=.68), others also completed the Sensors unit

(n=40, Mage=11.26, SD=.44), and some completed all three units; Basic Movement, Sensors and

the Program Flow unit (n=57, Mage=13.11, SD=.37, see further description of these units in the

Materials section). On average, students who completed the Program Flow unit were shown to be

significantly older than both the Basic Movement, t(92)=15.51, p<.001, d=3.26) and the Sensors

groups, t(89)=21.61, p<.001, d=4.66). However, on a single item measuring robotics experience

(“This is my first robotics class”), proportion of first time robotics students in the Program Flow

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

11	

group (12%) and the Basic Movement group (21%) showed no significant differences, t(94)=1.1,

p=.28, d=0.23, with only the Sensors group (70%) showing significantly more first-timers than

both the Basic Movement group, t(77)=5.02, p<.001, d=1.13, and Program Flow group,

t(95)=7.15, p<.001, d=1.48.

Materials

Robotics programming curriculum. The virtual robotics curriculum used here, developed

by Carnegie Mellon University and Robomatter, involves a sequence of lessons in robotics

programming utilizing a visual programming language, ROBOTC Graphical. Earlier versions of

a similar programming curriculum have been reported on in previous studies (see Authors et al.,

in press); however, for this study, each unit was shortened by removing sections that did not

contain conceptual programming content, with the aim of allowing more students to reach the

rich programming content in later units. Here we provide a brief overview of this revised

curriculum, emphasizing the elements which were created to support efficient learning and

transfer: procedural scaffolds (worked examples, guided videos), dynamic mini-challenges,

visual programming language, and Robot Virtual Worlds (RVW), a virtual programming

environment1.

The design of these curricular materials reflects a constructionist approach to instruction

in which learners’ use worked examples, scaffolding and reflection to build increasingly

complex programmed solutions and construct an understanding of the requisite programming

principles (Papert, 1980). To provide a shared context, students are provided with a short

introductory video to frame the activity. These videos are learner-paced and present visual

																																																								
1 Supplemental resources with additional details and examples of this curriculum are available in
the online version of this article.

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

12	

support together with a conversational narrative around the key concepts, to reduce extraneous

processing and foster generative processing (Mayer, 2008). Partial scaffolding (Puntambekar &

Hubscher, 2005) is introduced by way of questions to check students understanding, step-by-step

instruction on a conceptually related robotics programming activity, and a brief post activity quiz

to assess understanding, followed by the open-ended application of these skills within a game-

like challenge in the virtual programming environment, allowing students to apply their

knowledge more independently.

The curriculum consisted of three instructional units: Basic Movement, Sensors, and

Program Flow. For each unit, students engaged in the sequence of guided videos and mini-

lessons introducing the key concepts, and a final open-ended challenge. Each challenge required

a programmed solution that would vary superficially, but structurally require the inclusion of the

key concepts targeted in each unit. Important to note is that early tasks were more likely to be

static; that is, the task did not vary and could be solved using a relatively rote set of common

programmed commands. However, as students progressed, they encountered tasks which

required the use of robotics sensors and programming logic in ways that were dynamic; that is,

surface level aspects of the task would change in ways that required superficial adjustments to

the code, while the structural and conceptual features of the task remained the same (see Table

1).

(Table 1 here)

Students interacted with the curriculum through Robot Virtual Worlds, a simulated 3D

game-like virtual environment (see Figure 2) designed to emphasize the programming aspects of

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

13	

robotics, while maintaining student interest and engagement. Students can iteratively test

modular programmed solutions with simulated VEX IQ robots in a three-dimensional virtual

platform. It is important to note here that while the curriculum can be completed entirely within

the virtual environment, it is designed to replicate existing physical robotics hardware, and

therefore the capability to download and test programs on physical VEX IQ robots was available

to teachers with access to them. While some teachers may have taken advantage of this

capability, we are confident from observations and discussions with teachers that these did not

compose a majority of instruction.

Finally, these solutions are “remixed and reused” (Brennan & Resnick, 2012) to complete

more complex virtual challenges, in which learners must apply their previous programming

knowledge to problem solving tasks that foreground computational thinking principles like

abstraction, decomposition, and systems thinking.

(Figure 2 here)

To solve these challenges, students used a programming language called ROBOTC

Graphical to develop programmed solutions. ROBOTC Graphical has a visual programming

language interface, intended to allow students to focus on the broader logic of programming

while deemphasizing the particular syntactic requirements of more traditional programming

languages (see Figure 3).

(Figure 3 here)

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

14	

By representing robotics challenges in a virtual environment, this curriculum offers

affordances over physical robotics programs by reducing the potential frustration and distractors

of mechanical error, enabling students to focus on higher-level computational principles of

programming. While physical robots may have some advantages, an earlier study by Liu,

Newsom, Schunn, and Shoop (2013) found that students using an earlier version of this

technology achieved learning gains in programming content equivalent to students using

physical robots, but in significantly less time. Simulating robot movement reflects an authentic

engineering practice (see Michel, 2004), and virtual robots are also less expensive than physical

ones, allowing the benefits of the curriculum to reach a broader population where the costs of

physical robotics curricula can be prohibitive.

Programming assessment. Students completed a pre-and post-assessment of robotics

programming and computational thinking, consisting of programming items ranging from

concepts within the relatively narrow context of the virtual robotics programming language, to

more general language-agnostic programming questions, as well as generalizable computational

thinking items in a non-robotics context (see Appendix A for sample items). These items were

developed to target three core programming concepts common across a range of accepted

frameworks of programming and computational thinking; sequences, conditions and iteration

(see AP Computer Science Principles, 2016, Interim CSTA K-12 Computer Science Standards,

2016; Bienkowski et al., 2015).

Items were created to assess each of these concepts, at varying levels of functional

distance from the learning context (Barnett & Ceci, 2002). Functional distance was manipulated

in order to create three varying levels of transfer within the assessment; Robot Programming,

General Programming and Computational Thinking (see Table 2).These items assess both

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

15	

knowledge of programming concepts (i.e., sequences, conditions) as well as require the learner

to engage in computational practices (i.e., testing and refining computational artifacts; see K–12

Computer Science Framework, 2016). Armor’s q2 for the assessment overall was 0.84. By

section, the robot programming language questions had a q of 0.64; general programming items

had a q of 0.68, and the computational thinking items had a q of 0.65. Such theta values are

common for relatively short assessments that are intended to cover a range of concepts.

(Table 2 here)

Attitudes towards programming. Additionally, students also completed a short survey

prior to the pre and post-test exams, with 12 items that asked students about their interest,

competency beliefs, and development of identity in computer programming (see Appendix B for

a complete list of these survey items). Interest was gauged through four items (e.g., “I wonder

about how computer programs work”, Cronbach’s a=.79), rated along a four point Likert scale

(e.g. “Never” to “Every Day”). Competency beliefs were gauged through four items (e.g., “I am

sure I could do advanced work in programming”, a=.83) rated along a six point Likert scale (e.g.

“Strongly Disagree” to “Strongly Agree”). Finally, four items gauged level of identity as a

programmer (e.g., “My family thinks of me as a programming person”, a=.85), rated along a

four point Likert scale (e.g. NO! to YES!).

Measure characteristics. Overall, the three subcategories of skills were moderately

correlated with each other (see Table 3). Further, post correlations along skills categories

																																																								
2	Armor’s q is similar to Cronbach’s a, but is more appropriate for binary data (item correct vs.
item incorrect). 	

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

16	

followed the predicted pattern by level of transfer: robot programming and general programming

were more highly correlated (r =.51) than robot programming and computational thinking (r

=.43). Attitudinal measures were strongly correlated with each other, but not so high as to be

redundant measures. Skill measures were relatively independent of attitude measures, but

computational thinking items were significantly correlated with interest items at pre (r =.24), and

with competency beliefs at post (r =.31).

(Table 3 here)

Procedure and analysis

Students within each classroom were randomly assigned one of two analogous forms of

the assessment (Form A or Form B) as a pre-test prior to starting the robotics curriculum, and

later took the alternate form of the assessment as a post-test, in order to mitigate test-retest

effects. Pre-test scores showed no significant differences between Form A (n=64, M=10.3,

SD=4.5) and Form B (n=66, M=9.64, SD=4.0), t(128)=0.88, p=.38, d=0.15. That is, students

from a relatively similar population preformed equally well on either form of the assessment

prior to instruction, suggesting these two forms are relatively analogous measures. Therefore,

results from both forms were collapsed into pre-test and post-test scores in the reported analyses.

The motivational survey was identical pre and post, since test-retest effects are not typically a

concern for such surveys.

Assessment results were modeled using ANCOVA to determine if there were significant

differences in post-test scores between the Basic Movement, Sensors and Program Flow student

groups, while controlling for pre-test scores. Normality and homogeneity of variances for the

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

17	

three groups were tested and all assumptions for the analyses were met. Levene’s tests for

homogeneity of variance across the three groups showed no significant differences across the

three groups on pre-test scores for any of the sub-categories of programming assessment items or

motivational items. Next, a second series of ANCOVAs were conducted to test for differences

between these groups, but this time separately for each section of the assessment (robotics

programming, general programming, and computational thinking). This analysis was performed

to determine if students’ experience with particular units was associated with different levels of

gains in certain categories of programming assessment items.

Finally, survey scales were analyzed to determine if participation in each unit was

significantly associated with changes in the level of student reported programming interest,

identity formation as a programmer, and competency beliefs in their ability to program. First,

gains scores were generated as the mean differences between the pre- and post-survey responses

for each section of the survey. Next, ANCOVA were conducted using these gain scores to

determine if there were significant differences in gains in interest, identity and competency

beliefs from pre- to post-survey between the groups of students who reached Basic Movement,

Sensors, and Program Flow.

Results

Assessment Results

Overall results showed on average, significant increases of about 8 percentage points,

t(101)=5.44, p<.001, d=0.48, from pre- to post for all groups on assessment items, with larger

mean gains found in the Sensors and Program Flow groups. For the initial analysis of the

programming assessment items, an ANCOVA showed that overall differences between students

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

18	

in the Basic Movement, Sensors, and Program Flow groups were significant when controlling for

pre-test score, F(2,98)=10.14, p <.001, hp
2=0.17. Post-hoc analyses showed that while gains for

the Basic Movement group were significantly lower than both the Sensors and Program Flow

groups at the p<.001 level, no significant overall differences were found between the Sensors and

Program Flow groups, p=.73 (see Figure 4). Therefore, the predicted pattern was found, with

higher gains for students who progressed beyond the Basic Movement unit. Unexpectedly,

however, students who reached the Sensors unit also demonstrated overall gains on the

programming assessment that were comparable to the gains found for students who reached

Program Flow.

(Figure 4 here)

We next conducted a series of ANCOVA to see if there were significant differences between

each group in post-test scores within each section of the assessment, controlling for the pre-test

scores of those sections (see Figure 5).

Robot programming. The robot programming items showed significant differences

between the three different student groups, F(2,96)=8.24, p <.001, hp
2=0.15. Post-hoc analyses

showed significant differences between the Basic Movement group and both the Sensors

(p<.001) and Program Flow (p<.001) groups, but no significant differences between the Sensors

and Program Flow groups (p=.53). Students in the Basic Movement group, t(31)=0.37, p=.71,

d=0.10, and the Program Flow group, t(43)=1.32, p=.19, d=0.20, showed no significant pre- to

post-test gains on the robotics programming items, while significant gains were found for

students in the Sensors group, t(23)=2.61, p <.05, d=0.50. In sum, while only students who

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

19	

reached Sensors showed significant pre- to post-test gains on robotics programming items,

students who reached either Sensors or Program flow showed more growth on programming

items within a robotics context than students who only reached Basic Movement3.

General programming. The general programming items showed significant differences

between the three student groups, F(2,96)=11.62, p <.001, hp
2=0.19. Differences were

significant between the Basic Movement group and both the Sensors (p<.001) and Program Flow

(p<.001) group, but there were no significant differences found between the Sensors and

Program Flow groups (p=.85). Results from the General Programming section of the assessment

also show no significant pre-post gains for the Basic Movement group t(31)=0.00, p=1.0, d=0.00

but significant gains for both the Sensors, t(23)=3.76, p<.01, d=0.86, and Program Flow

t(43)=3.78, p<.001, d=0.59, groups. In sum, students who reached either Sensors or Program

Flow showed gains on items in a general programming context relative to students who only

reached Basic Movement, and these gains were slightly larger than the gains showed with the

robotics programming items, suggesting relatively robust transfer at this level.

Computational thinking. Computational thinking items showed significant differences

between the three student groups, F(2,94)=3.82, p <.05, hp
2=0.08. The differences were not

significant between the Basic Movement group and the Sensors group (p=.16), but significant

differences were found between the Basic Movement and the Program Flow group (p<.01). No

significant differences were found between the Sensors and Program Flow groups (p=.27).

Important to note here is that while on the other sections of the assessment the Sensors group

showed a significantly higher gain over the Basic Movement group, in the Computation

Thinking section of the assessment, these differences over Basic Movement only continue to be

																																																								
3 Effect sizes are of d=.20 are considered “small”, d=.50 “medium” and d=.80 “large”.

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

20	

significant for the group that completed the Program Flow section. Results from the

Computational Thinking section of the assessment also show no significant gains for the Basic

Movement group t(23)=1.50, p=.14, d=0.40, or the Sensors, t(23)=1.22, p=.24, d=0.31, groups,

but significant gains were found for the Program Flow group, t(41)=3.00, p<.01, d=0.45.

Therefore, the results suggest that particularly on items in the most distant computational

thinking context, there is a unique advantage for students who reach the Program Flow unit.

(Figure 5 here)

Motivation Change Results

To determine if different motivational effects were associated with each of the classroom

conditions, simple ANOVAs were conducted using the pre and post scores in Interest, Identity,

or Competency Beliefs (see Figure 6). All three conditions showed pre-post declines, but to

different degrees.

Interest. For Interest, significant differences were found in the level of interest changes

between the three groups, F(2,99)=6.06, p <.01, hp
2=0.11. Between group differences were

significant for the Program Flow and Basic Movement groups (p<.001) and for the Sensors and

Basic Movement groups (p<.05), but there were no significant differences in Interest changes

found between the Sensors and Program Flow groups. Therefore, results would suggest that in

addition to the content gains that were shown above, reaching both the Sensors, and particularly

the Program Flow unit, is also associated with relatively smaller declines in Interest in

programming. A significant decline in Interest from pre- to post-survey was found for students in

the Basic Movement group, t(31)=4.56, p<.001, d=0.61. Small, marginally statistical declines in

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

21	

Interest were found for the Sensors group, t(24)=1.91, p<.1, d=0.36 and there was no significant

decline in Interest for the Program Flow group, t(44)=1.57, p=.12, d=0.13.

Identity. Identity showed no significant differences between the three student groups,

F(2,99)=0.99, p =.37, hp
2=0.01. These results suggest that there was little impact on Identity for

the six to nine-week course, despite the different levels of content that were reached. Of the three

groups, only the Sensors groups showed small but marginally significant pre-post differences in

Identity, t(24)=1.79, p<.1, d=0.31, with no significant changes found in either the Basic

Movement group, t(31)=0.51, p=.61, d=0.08, or the Program Flow group, t(44)=0.00, p=1.0,

d=0.00.

Competency Beliefs. Finally, for Competency Beliefs, there were no significant

differences between the Basic Movement and Program Flow groups; however post-hoc analyses

showed that significant differences were found between Sensors and Basic Movement (p<.05).

Significant declines in Competency Beliefs were found for both the Basic Movement group,

t(31)=2.81, p<.01, d=0.40, and for the Program Flow group, t(44)=2.46, p<.05, d=0.27. There

were no significant pre-post differences in Competency Beliefs for the Sensors group, t(24)=0.0,

p=1.0, d=0.00. In sum, the Competency Belief declines were largest in the Basic Movement

group, smaller yet significant in the Program Flow group, and non-existent in the Sensors group.

(Figure 6 here)

Differences by Gender

Because the literature suggests that motivational factors can be strong predictors of performance

for women, particularly in traditionally male-dominated fields like CS (Pajares, 1996; Zeldin &

Pajares, 2000), we conducted a follow-up ANOVA to determine if there were significant

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

22	

differences by gender on the knowledge and motivational assessments, across all units. For

motivational factors, we found no significant differences between boys and girls at post,

controlling for pre, on interest, F(1,99)=0.69, p=.41, hp
2=0.01, identity, F(1,99)=1.10, p=.30,

hp
2=0.01, or competency beliefs, F(1,99)=0.57, p=.45, hp

2=0.01. However, when looking at the

three components of the knowledge assessment, girls showed significantly higher gains on each

section of the assessment, with particularly large advantages for girls in Robotics Programming,

F(1,97)=15.28, p <.001, hp
2=0.15. Smaller significant differences were also found between boys

and girls on General Programming, F(1,97)=6.65, p <.05, hp
2=0.06, and in Computational

Thinking, F(1,97)=5.45, p <.05, hp
2=0.05. This translates to girls performing about a 14

percentage points higher than males on the Robotics Programming items, about 12 percentage

points higher on the General programming items, and about 9 percentage points higher on the

Computational Thinking items, when controlling for their pre-test scores (see Figure 7).

(Figure 7 here)

Therefore, while girls and boys showed no significant differences in their motivations about

programming, girls showed larger gains in their programming knowledge than boys who

participated in the curriculum; possible explanations of these and other findings are taken up in

the next section.

General Discussion

With this study, we contribute to the literature on development of computational thinking

and of knowledge transfer in a programming context by evaluating whether students’

involvement in a virtual robotics curriculum is associated with an increase in their generalizable

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

23	

programming knowledge and computational thinking. Thus, the very concrete context of robotics

can be used to successfully teach relatively abstract computational concepts and skills.

Further, we found that students’ experiences with more conceptually rich units, which

provide multiple opportunities to engage in structurally similar tasks, are associated with larger

gains on programming assessment items presented in increasingly dissimilar contexts. This

finding supports the initial design decision to shorten the curriculum, in order to allow more

students to reach these later units. Importantly, when looking at specific groups of assessment

items, groups reaching those units performed better on more generalizable assessment items on

relatively dissimilar tasks, suggesting that the particular features of those units better facilitate

transfer for programming knowledge.

Another primary aim of this study was to determine if participation in a virtual robotics

curriculum was associated with changes in certain motivational characteristics that might predict

continued participation in computer science. Specifically, we examined whether students’

participation in each curriculum was associated with differential gains in programming interest,

identity as a programmer, and beliefs in their programming abilities. Overall, results showed

declines in these motivation characteristics; however, more nuanced patterns emerged when

observing these characteristics by group. Most importantly, programming interest did not decline

for those students who had completed the Program Flow unit.

Finally, our study shows that despite showing no pre-test differences on both knowledge

and motivational factors, girls who participated in these programs showed relatively higher

performance on the post-test than boys. This supports prior work suggesting that girls typically

outperform boys on a variety of subject throughout middle school, despite not necessarily being

any more confident in their abilities (Pomerantz, Altermatt, & Saxon, 2002).

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

24	

Limitations

One potential concern regarding the current study is the lack of random assignment to

conditions. As a result, the inherently correlation design does not directly address causality, and

we cannot be 100% certain that it was in fact differential exposure to the curriculum that caused

the observed changes. For example, it is possible that other unobserved factors, such the

particular instructional approaches taken by the teacher or the use of physical robotics to

supplement the virtual curriculum, may have varied. However, the teachers were equivalent in

training, and the classrooms making less progress were given a curriculum which have many

more basic activities, providing a plausible explanation for the differential progress.

Second, there is the potential age confound with our three groups. The Program Flow

group was found somewhat older than the other two; therefore, it is possible that latent,

unmeasured factors (e.g. mathematics learning) that occur during these grades could also be

different for this group, accounting for some of the differences in gains found. However, we

were able to show that students were comparable in their robotics experience and on their pre-

test scores across all groups, and age differences would also not account for the differences

found between the Basic Movement and Sensors group, which did not significantly differ in age.

Therefore, while age may explain some of the overall effect on assessment score, it is unlikely to

account for the differential patterns across the range of dissimilar assessment items.

Implications

Results found here support earlier evaluation of a similar curriculum (see Authors, in

press), showing that groups of students who were able to reach more conceptually rich units of

the curriculum (i.e., Sensors, Program Flow) were more likely to show gains across all

assessment items. Additionally, however, our current results show that groups reaching these

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

25	

units demonstrated particularly large gains specifically on the assessment items that were

relatively dissimilar from the original learning context. This is consistent with other studies in

the transfer literature that suggest students might acquire more generalizable knowledge by

engaging in tasks that vary superficial features while maintaining structural features, as was most

characteristic of tasks found in the Sensors and Program Flow units.

An interesting finding from this study is that on the most dissimilar computational

thinking items, only groups reaching the Program Flow unit showed significant gains above

those found in the Basic Movement group. One interpretation could be that the particular content

taught during Program Flow may provide students with additional opportunities to engage with

the logical structure of programming above and beyond Sensors. For example, the key

programming concept of iteration that is first introduced in this unit requires students to

understand how a looping (or “repeat”) structure can disrupt the typically sequential flow of a

program execution, and that the “repeat” operates on all commands within that loop. In the visual

programming language used with this curriculum, these loop structures are visually supported

through the use of color-coded virtual “brackets” which allow students to drag and drop the

commands to be repeated inside this loop structure. Therefore, through attending to the

underlying logic of the program execution in this unit, and using the features of the programming

language to emphasize program structure, students who engage in this unit may develop more

schematized programming knowledge that is more likely to be instantiated when solving

dissimilar problems (Reed, 1993).

Overall, results from the motivational analyses show declines across each of our

motivational measures. As we mentioned before, one of the known challenges in implementing

robotics courses in K-12 environments, unlike in informal robotics programs, is that students

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

26	

have not self-selected into these learning environments. Prior motivational studies of broad

cross-sections of students (i.e., not those specifically focused on STEM) have shown significant

declines in valuation of STEM subjects in middle school (Wigfield & Eccles, 2000). It is

possible, therefore, that our negative results merely show that our relatively short intervention

was unable to reverse this trend. Studies showing growth in interest development and STEM

identity development often find significant effects only after years of intervention (Aschbacher et

al., 2010; Hidi & Renninger, 2006). However, it is encouraging that while the overall direction

of these gains remained negative, in some groups we were able to observe a significant effect

that appears to maintain interest in programming even after a short amount of time. Theories of

interest development suggest that if maintained over time, a triggered situational interest can

evolve into a self-generated individual interest that leads to seeking additional opportunities to

participate in similar tasks (Hidi & Renninger, 2006). Therefore, future studies should continue

to investigate the potential for interventions that both prevent the typical decline in STEM during

middle school, as well as develop more powerful interventions that may reverse the effect.

The observed patterns in competency beliefs can be interpreted in relation to the relative

unfamiliarity of the requirements of programming for middle schoolers. Particularly in middle

school, students who are relatively unfamiliar with programming may experience a Dunning-

Kruger effect, where their assessment of their abilities are overly high, in part because their lack

of conceptual understanding of what programming entails causes their metacognitive self-

assessments to be inaccurate prior to engaging in the curriculum (Kruger & Dunning, 1999).

Further, superficial levels of understanding can help these inaccurate self-assessments to persist,

particularly if the learning environment prioritizes task completion rather than conceptual

understanding. For example, in simpler units of a robotics programming curriculum, student may

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

27	

be able to complete the robot tasks through guess-and-check methods, without much

understanding of the steps that were critical to accomplishing that task. If the curriculum allows

students to continually reconfirm their high self-assessment through automated feedback from

the virtual environment that affirms their progress, this mismatch between competency beliefs

and actual ability could grow, creating more drastic declines self-assessed competency when

later more difficult tasks are no longer solvable using the same novice methods. Therefore, to

avoid this effect in measurement, it would be interesting in future studies to implement a

retrospective pre-test method for measuring competency beliefs, where students would reflect at

post-test about the amount of knowledge they thought they had beginning, compared to the

amount that they had after completing the curriculum. Nonetheless, even if the effect is

attributable to an improved understanding of what it means to be competent, future work should

seek to leave students feeling more confident in their abilities, perhaps through a growth mindset

intervention (Blackwell, Trzesniewski, & Dweck, 2007; Miele & Molden, 2010).

Conclusion

Educational robotics may provide an opportunity to develop generalizable programming

knowledge and skills, as well as maintaining interest in programming through middle school.

This is particularly important as the number of careers related to computer science continues to

grow, and as computer science knowledge and skills become more broadly applicable in a

variety of non-computing fields. Teaching CS to all students is likely to require the inclusion of

CS instruction as a non-elective, general education class; however, less is known about potential

difficulties in implementing educational robotics in these more traditional K-12 classrooms. This

study suggests that a virtual robotics curriculum that utilizes a visual programming language, and

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

28	

offers dynamic programming tasks that vary superficial task features while keeping structural

features constant, could help develop knowledge structures that can be more readily applied in

relatively dissimilar contexts. Future studies utilizing a more rigorous quasi-experimental design

to control for a variety of potential differences between the conditions, as well as complementary

qualitative analyses, could provide additional insight into how particular instructional decisions

may interact with the curriculum to prevent or enhance the effects on student learning and

motivation.

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

29	

References

AP Computer Science Principles. (2016). New York, NY.

Aschbacher, P. R., Li, E., & Roth, E. J. (2010). Is science me? High school students’ identities,

participation and aspirations in science, engineering, and medicine. Journal of Research in

Science Teaching, 47(5), 564–582. http://doi.org/10.1002/tea.20353

Bandura, A. (1989). Social Cognitive Theory. In R. Vasta (Ed.), Annals of child development

(Vol. 6, pp. 1–60). Greenwich, CT: JAI Press. http://doi.org/10.1146/annurev.psych.52.1.1

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy

for far transfer. Psychological Bulletin, 128(4), 612–637. http://doi.org/10.1037/0033-

2909.128.4.612

Barnett, S. M., & Koslowski, B. (2002). Adaptive expertise: Effects of type of experience and the

level of theoretical understanding it generates. Thinking & Reasoning (Vol. 8).

http://doi.org/10.1080/13546780244000088

Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is Involved

and What is the Role of the Computer Science Education Community ? ACM Inroads, 2(1),

48–54. http://doi.org/10.1145/1929887.1929905

Beyer, S. (2014). Why are women underrepresented in Computer Science? Gender differences in

stereotypes, self-efficacy, values, and interests and predictors of future CS course-taking

and grades. Computer Science Education, 24(2–3), 153–192.

http://doi.org/10.1080/08993408.2014.963363

Bienkowski, M., Snow, E., Rutstein, D., & Grover, S. (2015). Assessment design patterns for

computational thinking practices in secondary computer science : A first look (SRI

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

30	

technincal report). Menlo Park, CA.

Blackwell, K. L., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit Theories of Intelligence

Predict Achievement Across an AdolescentTransition: A Longitudinal Study and an

Intervention in Child. Child Development, 78(1), 246–263. http://doi.org/10.1111/j.1467-

8624.2007.00995.x

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. Annual American Educational Research

Association Meeting, Vancouver, BC, Canada, 1–25. Retrieved from

http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf

Carter, L. (2006). Why students with an apparent aptitude for computer science don’t choose to

major in computer science. ACM SIGCSE Bulletin, 38(1), 27.

http://doi.org/10.1145/1124706.1121352

Collins, A. (2006). Cognitive Apprenticeship. In R. K. Sawyer (Ed.), The Cambridge Handbook

of the Learning Sciences (pp. 47–60). Cambridge, UK: Cambridge University Press.

Dalbey, J., & Linn, M. C. (1985). The demands and requirements of computer programming: A

review of the literature. Journal of Educational Computing Research, 1(3), 253–274.

http://doi.org/10.2190/BC76-8479-YM0X-7FUA

Engle, R. A. (2006). Framing Interactions to Foster Generative Learning: A Situative

Explanation of Transfer in a Community of Learners Classroom. The Journal of the

Learning Sciences, 15(4), 451–498.

Engle, R. A., & Conant, F. R. (2002). Guiding Principles for Fostering Productive Disciplinary

Engagement: Explaining an Emergent Argument in a Community of Learners Classroom.

Cognition and Instruction, 20(4), 399–483. http://doi.org/10.1207/S1532690XCI2004

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

31	

Ericson, B., & Guzdial, M. (2014). Measuring demographics and performance in computer

science education at a nationwide scale using AP CS data. In Proceedings of the 45th ACM

technical symposium on Computer science education (pp. 217–222).

http://doi.org/10.1145/2538862.2538918

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive

Psychology, 15(1), 1–38. http://doi.org/10.1016/0010-0285(83)90002-6

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the

Field. Educational Researcher, 42(1), 38–43. http://doi.org/10.3102/0013189X12463051

Harackiewicz, J. M., & Hulleman, C. S. (2010). The Importance of Interest: The Role of

Achievement Goals and Task Values in Promoting the Development of Interest. Social and

Personality Psychology Compass, 4(1), 42–52. http://doi.org/10.1111/j.1751-

9004.2009.00207.x

Hatano, G., & Inagaki, K. (1986). Two Courses of Expertise.

Hendricks, P. C. C., Alemdar, D. M., & Ogletree, D. T. W. (2012). Ac 2012-2994 : the Impact of

Participation in Vex Robotics Competition on Middle and High School Students ’ Inter- Est

in Pursuing Stem Studies and Stem-Related Careers. 2012 ASEE Annual Conference.

Hidi, S., & Renninger, K. A. (2006). The Four-Phase Model of Interest Development.

Educational Psychologist, 41(2), 111–127. http://doi.org/10.1207/s15326985ep4102

Interim CSTA K-12 Computer Science Standards. (2016). New York, NY.

K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org

Kelleher, C., & Pausch, R. (2005). Lowering the Barriers to Programming : a survey of

programming environments and languages for novice programmers. Science, 37(2), 83–137.

http://doi.org/10.1145/1089733.1089734

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

32	

Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing

one’s own incompetence lead to inflated self-assessments. Journal of Personality and

Social Psychology, 77(6), 1121–34. http://doi.org/10.1037/0022-3514.77.6.1121

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A Study of the development of

programming ability and thinking skills in high school students. Journal of Educational

Computing Research, 2(4), 429–458. http://doi.org/10.2190/BKML-B1QV-KDN4-8ULH

Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation - Jean

Lave, Etienne Wenger - Google Books. Cambridge University Press. Cambridge, UK:

Cambridge University Press. Retrieved from

https://books.google.co.uk/books?id=ZVogAwAAQBAJ&printsec=frontcover&source=gbs

_ge_summary_r&cad=0#v=onepage&q&f=false

Linn, M. C., & Dalbey, J. (1985). Cognitive consequences of programming instruction:

instruction, access, and ability. Educational Psychologist, 20(4), 191–206.

Liu, a, Newsom, J., Schunn, C., & Shoop, R. (2013). Students Learn Programming Faster

through Robotic Simulation. Tech Directions, 72(march), 16–19. Retrieved from

http://www.education.rec.ri.cmu.edu/content/educators/research/files/p16-19 Shoop et

al.pdf

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking

through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.

http://doi.org/10.1016/j.chb.2014.09.012

Mayer, R. E. (2008). Applying the science of learning: evidence-based principles for the design

of multimedia instruction. The American Psychologist, 63(8), 760–769.

http://doi.org/10.1037/0003-066X.63.8.760

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

33	

Michel, O. (2004). Webots TM : Professional Mobile Robot Simulation. International Journal of

Advanced Robotic Systems, 1(1), 39–42. http://doi.org/10.1.1.86.1278

Miele, D. B., & Molden, D. C. (2010). Naive theories of intelligence and the role of processing

fluency in perceived comprehension. Journal of Experimental Psychology: General, 139(3),

535–557. http://doi.org/10.1037/a0019745

Pajares, F. (1996). Self-Efficacy Beliefs in Academic Settings. Review of Educational Research,

66(4), 543–578. http://doi.org/10.3102/00346543066004543

Palumbo, D. B. (1990). Programming Language/Problem-Solving Research: A Review of

Relevant Issues. Review of Educational Research, 60(1), 65–89.

http://doi.org/10.3102/00346543060001065

Papert, S. (1980). Mindstorms. New York, NY: Basic Books, Inc. Retrieved from

http://dl.acm.org/citation.cfm?id=1095592

Papert, S., & Harel, I. (1991). SItuating Constructionism.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer

programming. New Ideas in Psychology, 2(2), 137–168. http://doi.org/10.1016/0732-

118X(84)90018-7

Petre, M., & Price, B. (2004). Using robotics to motivate “back door” learning, 147–158.

http://doi.org/10.1023/B:EAIT.0000027927.78380.60

Pomerantz, E. M., Altermatt, E. R., & Saxon, J. L. (2002). Making the grade but feeling

distressed: Gender differences in academic performance and internal distress. Journal of

Educational Psychology, 94(2), 396–404. http://doi.org/10.1037/0022-0663.94.2.396

Puntambekar, S., & Hubscher, R. (2005). Tools for scaffolding students in a complex learning

environment: What have we gained and what have we missed? Educational Psychologist,

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

34	

40(1), 1–12. http://doi.org/10.1207/s15326985ep4001

Reed, S. K. (1993). A schema-based theory of transfer. Transfer on Trial: Intelligence,

Cognition, and Instruction, 1, 39–67.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of

a checklist for getting computational thinking into public schools. SIGCSE 10 Proceedings

of the 41st ACM Technical Symposium on Computer Science Education, 265–269.

http://doi.org/10.1145/1734263.1734357

Robins, A., Rountree, J., & Rountree, N. (2010). Learning and Teaching Programming : A

Review and Discussion. Computer Science Education, 13(2), 137–172.

http://doi.org/10.1076/csed.13.2.137.14200

Rusk, N., Resnick, M., Berg, R., & Pezalla-Granlund, M. (2008). New pathways into robotics:

Strategies for broadening participation. Journal of Science Education and Technology,

17(1), 59–69. http://doi.org/10.1007/s10956-007-9082-2

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming: When and

how? Journal of Educational Computing Research, 3(2), 149–169.

Weick, K. E. (1984). Small wins: Redefining the scale of social problems. American

Psychologist, 39(1), 40–49. http://doi.org/10.1037/0003-066X.39.1.40

Wigfield, A., & Eccles, J. S. (2000). Expectancy–Value Theory of Achievement Motivation.

Contemporary Educational Psychology, 25(1), 68–81.

http://doi.org/10.1006/ceps.1999.1015

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33.

http://doi.org/10.1145/1118178.1118215

Witherspoon, E. B., Schunn, C. D., Higashi, R. M., & Baehr, E. C. (2016). Gender, interest, and

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

35	

prior experience shape opportunities to learn programming in robotics competitions.

International Journal of STEM Education, 3(1), 18. http://doi.org/10.1186/s40594-016-

0052-1

Zeldin, A. L., & Pajares, F. (2000). Against the Odds: Self-Efficacy Beliefs of Women in

Mathematical, Scientific, and Technological Careers. American Educational Research

Journal, 37(1), 215–246. http://doi.org/10.3102/00028312037001215

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

36	

Supporting Information

Supplemental resources containing additional details and examples of this curriculum are

available here.

The linked website provides limited access to a wireframe mockup example of one of the

lessons from the Program Flow unit utilized in the study, including a contextual introduction,

scaffolded mini-lessons, worked example code review, and an open-ended dynamic challenge, as

well as all accompanying videos. Available for navigation in the side menu are all materials and

video within the pages titled: Introduction with Container Transport, Looped Decision, Code

Review and Strawberry Sorter Challenge (other menu items are restricted in this sample version).

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

37	

Tables

Table 1. Analysis of challenge tasks and programming concepts for each curricular unit

Unit Chapter Challenge Task Programming Concepts

Basic Movement Moving Forward Static Sequences

 Turning Static Sequences

Sensors Forward Until Near Dynamic Sequences, Conditions

 Turn for Angle Static Sequences, Conditions

 Color Sensor Dynamic Sequences, Conditions

Program Flow Loops Dynamic Sequences, Conditions, Iteration

 If-Else Dynamic Sequences, Conditions, Iteration

 Repeated Decisions Dynamic Sequences, Conditions, Iteration

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

38	

Table 2. An overview of the three functional dimensions and the three programming concepts of

the Programming Assessment.

Dimensions Items Concepts Items Example content

Robot

Programming

6 Sequences 2 What sequence of movements will get the robot

to the end of the maze?

Conditions 2 At what distance sensor value will the robot

stop moving?

Loops 2 Which actions will the robot repeat if the

bumper sensor is pushed in?

General

Programming

7 Sequences 2 In what order will a program run if additional

lines are added to it?

Conditions 3 Can a condition always be evaluated as either

true or false?

Loops 2 Can program be written that will make a loop

repeat in reverse?

Computational

Thinking

12 Sequences 3 Will the removal of this line of the program

change the display on a heart monitor?

Conditions 5 At what combination of blood pressure readings

will this heart monitor emit an alarm?

Loops 4 Which of these two programs will identify the

correct blood pressure in the least number of

iterations?

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

39	

Table 3. Maximum values, pre-post grand means (and SD), and measure intercorrelations, with

pre-post correlations on the diagonal in square brackets, post-post correlations above the

diagonal, and pre-pre correlations below the diagonal.

 Pre Post

 N M (SD) N M (SD) Max 1 2 3 4 5 6

1. RP1 128 2.6 (1.3) 107 3.0 (1.3) 6 [.49]** .51** .43** .15 .05 .23

2. GP2 128 3.1 (1.6) 107 4.0 (1.8) 7 .54** [.37]** .52** .12 -.05 .12

3. CT3 127 4.5 (2.2) 107 5.3 (2.4) 12 .40** .31** [.41]** .18 .08 .31*

4. Int.4 130 2.4 (.66) 107 2.2 (.75) 4 .13 .15 .24* [.73]** .68** .64**

5. ID5 130 1.9 (.69) 107 1.8 (.75) 4 .09 .14 .17 .72** [.70]** .60**

6. CB6 130 4.3 (1.0) 107 4.0 (1.3) 6 .17 .13 .17 .64** .62** [.70]**

Note. * p <.01 ** p <.001

1 Robot Programming 2General Programming 3Computational Thinking 4 Interest 5 Identity 6 Competency Beliefs

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

40	

Figure Legend

Figure 1. An example of a text-based programming language, and a visual programming

language using graphical features.

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

41	

Figure 2. An example of a dynamic programming task. Using if/else statements, loops, and

sensors, students program the robot to sort flags onto the left or right conveyor belt based on the
color, which is dynamically assigned.

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

42	

	

Figure 3. Examples of the graphical programming language used.

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

43	

Figure 4. Mean overall skill postscore (with SE bars) by classroom condition, controlling for pre.

0

0.2

0.4

0.6

0.8

1

Basic	Programming +	Sensors +	Program	Flow

Es
t.	
Pr
op
or
tio

n	
Co
rre

ct

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

44	

Figure 5. Post-test means (with SE bars) in each skill measure, controlling for pre-test, for each

condition.

0.3

0.4

0.5

0.6

0.7

Robot	Programming General	Programming Computational	Thinking

Es
t.	
Pr
op
or
tio

n	
Co
rr
ec
t	

Basic	Movement +Sensors +Program	Flow

**

* p<.05,	** p<.01,	***	p<.001

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

45	

Figure 6. Mean pre-post changes in Interest, Identity, and Competency Beliefs, by amount of

progress through the curriculum.

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

Interest Identity Competency	Beliefs
Es
t.	
M
ea
n	
G
ai
ns
			

Basic	Movement +	Sensors +	Program	Flow

*	p<.05,	**p<.01,	***	p<.001

*

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

46	

Figure 7. Post-test means (with SE bars) in each skill measure, controlling for pre-test, by

gender.
	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Robot	Programming General	Programming Computational	Thinking

Pr
op
or
tio

n	
Co
rre

ct

Male Female

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

47	

Table 1. Analysis of challenge tasks and programming concepts for each curricular unit

Unit Chapter Challenge Task Programming Concepts

Basic Movement Moving Forward Static Sequences

 Turning Static Sequences

Sensors Forward Until Near Dynamic Sequences, Conditions

 Turn for Angle Static Sequences, Conditions

 Color Sensor Dynamic Sequences, Conditions

Program Flow Loops Dynamic Sequences, Conditions, Iteration

 If-Else Dynamic Sequences, Conditions, Iteration

 Repeated Decisions Dynamic Sequences, Conditions, Iteration

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

48	

Table 2. An overview of the three functional dimensions and the three programming concepts of

the Programming Assessment.

Dimensions Items Concepts Items Example content

Robot

Programming

6 Sequences 2 What sequence of movements will get the robot

to the end of the maze?

Conditions 2 At what distance sensor value will the robot

stop moving?

Loops 2 Which actions will the robot repeat if the

bumper sensor is pushed in?

General

Programming

7 Sequences 2 In what order will a program run if additional

lines are added to it?

Conditions 3 Can a condition always be evaluated as either

true or false?

Loops 2 Can program be written that will make a loop

repeat in reverse?

Computational

Thinking

12 Sequences 3 Will the removal of this line of the program

change the display on a heart monitor?

Conditions 5 At what combination of blood pressure readings

will this heart monitor emit an alarm?

Loops 4 Which of these two programs will identify the

correct blood pressure in the least number of

iterations?

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

49	

Table 3. Maximum values, pre-post grand means (and SD), and measure intercorrelations, with

pre-post correlations on the diagonal in square brackets, post-post correlations above the

diagonal, and pre-pre correlations below the diagonal.

 Pre Post

 N M (SD) N M (SD) Max 1 2 3 4 5 6

1. RP1 128 2.6 (1.3) 107 3.0 (1.3) 6 [.49]** .51** .43** .15 .05 .23

2. GP2 128 3.1 (1.6) 107 4.0 (1.8) 7 .54** [.37]** .52** .12 -.05 .12

3. CT3 127 4.5 (2.2) 107 5.3 (2.4) 12 .40** .31** [.41]** .18 .08 .31*

4. Int.4 130 2.4 (.66) 107 2.2 (.75) 4 .13 .15 .24* [.73]** .68** .64**

5. ID5 130 1.9 (.69) 107 1.8 (.75) 4 .09 .14 .17 .72** [.70]** .60**

6. CB6 130 4.3 (1.0) 107 4.0 (1.3) 6 .17 .13 .17 .64** .62** [.70]**

Note. * p <.01 ** p <.001

1 Robot Programming 2General Programming 3Computational Thinking 4 Interest 5 Identity 6 Competency Beliefs

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

50	

Appendix A.

Sample robotics programming items

Take a look at the program plan below. How will each individual line of code be run once it
is programmed?

Line 1: Move forward for 5 seconds, at 100% speed
Line 2: Turn left 1 rotation, at 50% speed
Line 3: Move forward for 5 seconds, at 50% speed
Line 4: Turn right 1 rotation, at 50% speed

Select one:

O Only the first command runs
O The commands are run in order according to their line numbers
O All commands run at once
O The commands are run in a random order

Sample general programming item

Which of the following is true about conditions?

Select one:
O They must always end up either true or false
O They represent decision-making logic in a program
O You can write a condition that is always true or always false
O All of the above

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

51	

Sample computational thinking item

Scenario C: Personal Fitness Devices
Personal fitness devices use electronic sensors to continuously monitor and track data about a
user’s heath such as steps taken, calories burned, and heart rate.
The BP-Sure company is developing a new feature for their fitness device that also measures the
user’s blood pressure, using sensors that detect a user’s heartbeat. When the heart pushes blood
through the arteries, the device records "Pressure 1", and when the heart is resting, the device
records “Pressure 2”.	

The device can determine if a user’s blood pressure is in the Normal, Medium or High range, by
comparing blood pressure readings to the chart below.

Use the chart below to answer questions #19, #20 and #21.

A new programmer on the team writes the following series of steps to determine the display
when a user is in the “Normal BP” range:
	

(Line	1)	 IF (p1 <= 120 AND
(Line	2)	 p1 <= 121 AND
(Line	3)	 p2 <= 80 AND
(Line	4)	 p2 <= 81)
(Line	5)	 THEN	set display = “Normal	BP”

Which lines can be removed to make the code more efficient, while not changing the
code output?

Select one:

O Line 1 and Line 4
O Line 2 and Line 3
O Line 2 and Line 4
O Line 1 and Line 3

Blood Pressure Pressure 1 (p1) Pressure 2 (p2)
Normal BP p1 <= 120 AND p2 <= 80
Medium BP 121 <= p1 <= 139 AND 81 <= p2 <= 89

High BP p1 >= 140 OR p2 >= 90

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

52	

Appendix B. Sample motivational survey items

Sample interest items

I wonder about how computer programs work.

O Never
O Once a month
O Once a week
O Every day

In general, when I work on programming, I:
O Hate it
O Don’t like it
O Like it
O Love it

In general, I find programming:
O Very boring
O Boring
O Interesting
O Very interesting

After a really interesting programming activity is over, I look for more information about it.
O NO!
O No
O Yes
O YES!

Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

53	

Sample identity items

Please rate according to Not me and Exactly me.

 Exactly Me
(1) (2) (3) Not Me

(4)
I am a "computer programming
person". O O O O

8. Please rate these according to YES!, Yes, No, and NO!
 YES! yes no NO!

a. My family thinks of me as a "programming
person".

O O O O

b. My friends think of me as a "programming person".

O O O O

c. My teachers/instructors think of me as a
"programming person".

O O O O

Sample competency belief items

 Strongly
Agree

Somewhat
Agree

Agree Disagree Somewhat
Disagree

Strongly
Disagree

a. I am sure I could do
advanced work in
programming.

O O O O O O

b. I am sure that I can
learn programming.

O O O O O O

c. I could do a good job
as a programmer for an
afterschool robotics
team at my school.

O O O O O O

d. I could get an A on a
programming
assignment in a
technology class.

O O O O O O

