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Abstract 

Educational robotics programs offer an engaging opportunity to potentially teach core 

computer science concepts and practices in K-12 classrooms. Here we test the effects of units 

with different programming content within a virtual robotics context on both learning gains and 

motivational changes in middle school (6th-8th grade) robotics classrooms. Significant learning 

gains were found overall, particularly for groups introduced to content involving program flow, 

the structural logic of program execution. Relative gains for these groups were particularly high 

on items that require the transfer of knowledge to dissimilar contexts. Reaching units that 

included program flow content was also associated with greater maintenance of programming 

interest when compared with other units. Therefore, our results suggest that explicit instruction 

in the structural logic of programming may develop deeper transferrable programming 

knowledge, and prevent declines in some motivational factors. 
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Attending to structural programming features predicts differences in learning and motivation in a 

virtual robotics programming curriculum 

 

Introduction 

Computer science (CS) is quickly becoming an essential part of core K-12 STEM 

curricula, as schools attempt to prepare students for an expanding range of careers that require 

substantial CS knowledge. Despite a decline in participation in the early 2000s, enrollment in 

Advanced Placement CS classes are again on the rise, with 15% to 25% year-over-year increases 

in students taking the AP CS A exam every year from 2011 to 2016 (The College Board AP 

Data, 2016; Ericson & Guzdial, 2014). Policy initiatives like CS for All highlight the importance 

of preparing all students to apply computer science skills within a wide variety of careers (Smith, 

2016). Therefore, research on K-12 CS education should examine features of learning 

environments that enable students to apply a conceptual understanding of CS to a variety of 

contexts, and grow STEM interest, identity, and engagement for a wider range of students. 

Educational robotics can provide engaging CS experiences to diverse students (Rusk, 

Resnick, Berg, & Pezalla-Granlund, 2008). These experiences also support learning abstract 

computer programming by using concrete external representations (Papert & Harel, 1991). Out-

of-school robotics activities like summer camps and club teams can also expand interest in 

STEM careers (Hendricks, Alemdar, & Ogletree, 2012; Petre & Price, 2004). Overall, 

introducing robotics curriculum into general education classrooms may help disseminate 

programming to a broader population beyond those who self-select into robotics electives and 

clubs.  
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However, little is known about whether programming knowledge gained from these 

activities is carried beyond the context of robotics. Further, relatively few empirical studies 

examine whether educational robotics experiences can produce gains in both motivation and 

programming knowledge (i.e., be fun and rigorous). In this study, we investigate what aspects of 

a robotics programming curriculum may lead to transferrable knowledge that will prepare 

students for a range of future CS-relevant careers. Further, we are interested in determining if 

there is a relationship between curricular features and shifts in motivational factors, which may 

also be relevant to persisting in CS learning experiences; namely, the development of higher 

levels of students’ programming interest, programming identity, and their beliefs in their ability 

to be successful in CS. 

Teaching generalizable programming skills 

Computational thinking, a term that has gained a great deal of attention in K-12 CS 

education over the past decade, is broadly defined as “an approach to solving problems in a way 

that can be solved by a computer…a problem solving methodology that can be transferred and 

applied across subjects” (Barr & Stephenson, 2011). Consensus has not yet been reached over 

the specific concepts that make up computational thinking. However, there is consensus that it 

should involve very general programming practices such as algorithmic thinking and design 

processes, which, as high-level practices, could be generalizable across contexts (Grover & Pea, 

2013; Wing, 2006). Various organizations have suggested that more specific concepts and skills 

of computer science such as iteration and task decomposition are fundamental in the 

development of computational thinking; in this paper, we focus on particular fundamental 

programming concepts and skills that are generally endorsed as important (see AP Computer 
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Science Principles, 2016, Interim CSTA K-12 Computer Science Standards, 2016; Bienkowski, 

Snow, Rutstein, & Grover, 2015).  

The K-12 Computer Science Framework (2016) suggests that by 8th grade, CS students 

should be learning to develop modular, generalizable algorithms that can produce a range of 

outputs based on different inputs, and incorporate more complex control structures (i.e., 

conditions nested within loops). These build upon the basic concepts developed in elementary 

school such as identifying “everyday” algorithms (i.e., steps for making a sandwich) and prepare 

students for more advanced CS content in high school (i.e., recursion, arrays). In addition to 

specific grade-level concepts, the Frameworks also emphasize core computational practices 

across grade bands, such as decomposition of complex problems into smaller sub-goals, using 

abstraction to functionalize their solutions, and troubleshooting programs to identify errors in 

logic.  

Aspects of general programming can be taught within a wide range of learning 

environments, including robotics (Lye & Koh, 2014). Since the 1980s, cognitive scientists have 

theorized that learning computer programming could develop students’ general problem solving 

skills, yet few studies have been able to demonstrate empirical support for these claims (Dalbey 

& Linn, 1985; Kurland, Pea, Clement, & Mawby, 1986; Pea & Kurland, 1984). Transfer of 

knowledge and skills to other contexts is believed to be more likely if students understand the 

underlying structural features of programming logic (i.e., which commands in a loop will be 

repeated, when/if a conditional statement will execute), rather than more superficial rote 

repetition of programming language features and syntax (i.e., when a semi-colon is needed to 

indicate the end of a line; where to place brackets around loops; Palumbo, 1990; Salomon & 

Perkins, 1987). For example, early studies involving the BASIC programming language showed 
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that students were able to make more progress towards developing problem solving skills that 

could be applied to learning other programming languages when their instructor focused 

explicitly on program design (e.g., task decomposition, debugging processes), rather than 

language-specific features (Linn & Dalbey, 1985). Explicit attention to the structural logic of a 

program (i.e., control structures and program flow) could organize programming knowledge into 

schemas, which make it easier to recognize similarities in novel tasks and select an appropriate 

solution.  

Recent advances in educational technologies have revitalized research on the potential 

generalizability of programming knowledge and skills. Visual programming languages like 

Scratch are thought to reduce the cognitive load for novice programmers by reducing superficial 

syntactic errors, freeing learners to focus on the structural logic of code (Kelleher & Pausch, 

2005; Robins, Rountree, & Rountree, 2010). For example, rather than requiring specific 

punctuation to denote a looping structure, visual languages embed these features within graphical 

blocks, using colors and other cues to easily represent these functions (see Figure 1). Particularly 

important within the K-12 context, these scaffolds could make programming more approachable 

for students with relatively little prior programming experience (Repenning, Webb, & Ioannidou, 

2010). 

 

(Figure 1 here) 

 

To develop these transferable knowledge structures, some research suggests that 

providing a variety of examples could help novices to induce more general rules that develops an 

adaptive rather than routine expertise (Barnett & Koslowski, 2002; Hatano & Inagaki, 1986).  
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Multiple examples may be particularly effective for transfer when there are variations in the 

superficial features of a problem, but no change in the underlying structural features that are 

functionally related to the task outcome (Gick & Holyoak, 1983). Given the high level of 

perceptual features in robotics contexts (i.e., narrative task features, mechanical robotics parts) 

that might limit transfer, programming transfer from robotics might be especially dependent 

upon dynamic programming tasks that change superficial features of the problem (i.e., layout of 

a maze, arrangement of blocks to be moved) before each attempt, in order to develop students’ 

ability to recognize the underlying solution requirements. 

In sum, advances in educational technology and an understanding of its pedagogical 

implications for programming could allow curriculum designers to develop lessons that better 

scaffold problem solving expertise to support the generation of transferrable knowledge. In this 

study, we examine students’ progress through a virtual robotics curriculum that introduces 

dynamic problem solving tasks using a visual programming language, allowing them to focus on 

the logic of programming structures that must be responsive to dynamically shifting task 

features. 

Motivating interest and maintaining competency beliefs 

While developing a conceptual understanding of CS that can be applied within a variety 

of contexts is important, students’ continued participation in CS-related careers is also likely to 

require the development of motivational factors such as programming interest, identity as a 

programmer, and positive beliefs about programming abilities. Robotics programs have been 

heavily studied in out-of-school learning environments, which generally focus on extending 

students’ existing STEM interests. By contrast, in-school robotics courses are less likely to have 

self-selected populations of students with high STEM interest, and therefore may struggle to 
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keep all students equally engaged in programming. Studies at the middle, high school, and 

undergraduate level suggest that students’ interest in a topic can predict how they choose to 

spend their free time, what courses they select, and what major they pursue (Harackiewicz & 

Hulleman, 2010). However, early CS experiences that do not seem relevant to prior interests, or 

reinforce negative stereotypes about CS careers, could deter students from choosing a CS major 

in the future; these negative effects may be particularly strong for women (Beyer, 2014; Carter, 

2006). For example, a study of middle and high school robotics teams showed that girls’ 

declining participation in programming activities was explained by a concurrent decline in 

interest in programming (Witherspoon, Schunn, Higashi, & Baehr, 2016). To encourage long-

term participation in CS, K-12 general education robotics classes should aim to trigger 

situational interest in novice programming students, while also deepening individual interest by 

developing confidence in programming ability. 

Providing opportunities for students to develop their identity as a programmer may also 

be an important factor in encouraging continued participation in CS. Activities that provide 

opportunities for “productive disciplinary engagement”, where students work on authentic 

problem-solving tasks that require them to use the practices of a field, could develop students’ 

identity in ways that predict continued participation (Collins, 2006; Engle, 2006; Engle & 

Conant, 2002). In a longitudinal study of persistence in science, high school students who had 

opportunities to participate in communities of practice (Collins, 2006; Lave & Wenger, 1991) 

were more likely to continue to consider a career in science (Aschbacher, Li, & Roth, 2010).  

Levels of engagement and persistence in CS may also be closely associated with 

students’ perceptions of both the difficulty of programming as a discipline, and their own 

abilities (Bandura, 1989). Further, beliefs about ability in STEM domains have been shown to be 
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more predictive of performance than both prior experience or outcome expectations; gifted 

women may be particularly prone to under-confidence in those traditionally male-dominated 

fields (Pajares, 1996; Zeldin & Pajares, 2000). However, exposing students to advanced content 

can sometimes have the unfortunate side-effect of reducing student confidence levels because 

they come to learn what competence in the domain actually involves; ironic tradeoffs between 

actual ability development and perceived abilities can exist. Allowing students to experience 

“small wins” at each step of the programming process could cause the perception of each overall 

problem solving task to be less daunting, appear less demanding, and raise students’ perceived 

ability level (Weick, 1984). 

Overall, this suggests that interest and other motivational factors may play a significant 

role in K-12 students’ persistence in CS activities. In addition to learning transferrable CS skills, 

motivating all students in K-12 to continue to engage with a variety of CS learning opportunities 

will be important for preparing students for the growing variety of CS-relevant careers. 

Therefore, to determine the effectiveness of this curriculum in achieving these goals, in this 

study we also measure participants’ development of programming interest, identity, and 

competency beliefs. 

Research questions 

Our main research questions are twofold: First, is reaching more conceptually rich units 

associated with larger overall learning gains in programming?  Further, are learning gains found 

within contextually distant transfer items? If so, this will help strengthen our claims that it is the 

particular character of the tasks in later units that are driving knowledge transfer, and not simply 

the repetition of more foundational concepts. Second, we aim to determine if participation in the 

curriculum is associated with any significant changes (positive or negative) in motivational 
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characteristics, particularly interest, identity, and competency beliefs. Effects on motivation is 

also an important feature of a K-12 CS curriculum that aims to be effective in non-elective 

learning environments (i.e., broaden participation at later levels).  

 

Methods 

Sample 

The sample for this study consisted of N=136 6th and 8th grade students within seven 

different robotics classes taught by three teachers across two schools in southwestern 

Pennsylvania. The sample was predominantly White (78%) and relatively equally divided by sex 

(Male = 52%, Female = 48%). Each participating teacher taught 2-3 sections of robotics using 

the virtual curriculum and elected to be part of the study. Teachers were relatively comparable in 

terms of level of training and teaching experience, all having received at least a four year 

Bachelor’s of Science degree in Technology Education, as well as attending two professional 

development sessions about the curriculum prior to implementation. All human subjects research 

received Institutional Review Board (IRB) approval prior to the commencement of the study. 

Participants in the study completed different levels of the curriculum; some finished only 

the Basic Movement unit (n=39, Mage=11.42, SD=.68), others also completed the Sensors unit 

(n=40, Mage=11.26, SD=.44), and some completed all three units; Basic Movement, Sensors and 

the Program Flow unit (n=57, Mage=13.11, SD=.37, see further description of these units in the 

Materials section). On average, students who completed the Program Flow unit were shown to be 

significantly older than both the Basic Movement, t(92)=15.51, p<.001, d=3.26) and the Sensors 

groups, t(89)=21.61, p<.001, d=4.66). However, on a single item measuring robotics experience 

(“This is my first robotics class”), proportion of first time robotics students in the Program Flow 



Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

11	

group (12%) and the Basic Movement group (21%) showed no significant differences, t(94)=1.1, 

p=.28, d=0.23, with only the Sensors group (70%) showing significantly more first-timers than 

both the Basic Movement group, t(77)=5.02, p<.001, d=1.13, and Program Flow group, 

t(95)=7.15, p<.001, d=1.48. 

Materials 

Robotics programming curriculum. The virtual robotics curriculum used here, developed 

by Carnegie Mellon University and Robomatter, involves a sequence of lessons in robotics 

programming utilizing a visual programming language, ROBOTC Graphical. Earlier versions of 

a similar programming curriculum have been reported on in previous studies (see Authors et al., 

in press); however, for this study, each unit was shortened by removing sections that did not 

contain conceptual programming content, with the aim of allowing more students to reach the 

rich programming content in later units.  Here we provide a brief overview of this revised 

curriculum, emphasizing the elements which were created to support efficient learning and 

transfer: procedural scaffolds (worked examples, guided videos), dynamic mini-challenges, 

visual programming language, and Robot Virtual Worlds (RVW), a virtual programming 

environment1. 

The design of these curricular materials reflects a constructionist approach to instruction 

in which learners’ use worked examples, scaffolding and reflection to build increasingly 

complex programmed solutions and construct an understanding of the requisite programming 

principles (Papert, 1980). To provide a shared context, students are provided with a short 

introductory video to frame the activity. These videos are learner-paced and present visual 

																																																								
1 Supplemental resources with additional details and examples of this curriculum are available in 
the online version of this article. 
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support together with a conversational narrative around the key concepts, to reduce extraneous 

processing and foster generative processing (Mayer, 2008). Partial scaffolding (Puntambekar & 

Hubscher, 2005) is introduced by way of questions to check students understanding, step-by-step 

instruction on a conceptually related robotics programming activity, and a brief post activity quiz 

to assess understanding, followed by the open-ended application of these skills within a game-

like challenge in the virtual programming environment, allowing students to apply their 

knowledge more independently.  

The curriculum consisted of three instructional units: Basic Movement, Sensors, and 

Program Flow. For each unit, students engaged in the sequence of guided videos and mini-

lessons introducing the key concepts, and a final open-ended challenge. Each challenge required 

a programmed solution that would vary superficially, but structurally require the inclusion of the 

key concepts targeted in each unit.  Important to note is that early tasks were more likely to be 

static; that is, the task did not vary and could be solved using a relatively rote set of common 

programmed commands.  However, as students progressed, they encountered tasks which 

required the use of robotics sensors and programming logic in ways that were dynamic; that is, 

surface level aspects of the task would change in ways that required superficial adjustments to 

the code, while the structural and conceptual features of the task remained the same (see Table 

1).  

 

(Table 1 here) 

 

Students interacted with the curriculum through Robot Virtual Worlds, a simulated 3D 

game-like virtual environment (see Figure 2) designed to emphasize the programming aspects of 
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robotics, while maintaining student interest and engagement. Students can iteratively test 

modular programmed solutions with simulated VEX IQ robots in a three-dimensional virtual 

platform. It is important to note here that while the curriculum can be completed entirely within 

the virtual environment, it is designed to replicate existing physical robotics hardware, and 

therefore the capability to download and test programs on physical VEX IQ robots was available 

to teachers with access to them. While some teachers may have taken advantage of this 

capability, we are confident from observations and discussions with teachers that these did not 

compose a majority of instruction. 

Finally, these solutions are “remixed and reused” (Brennan & Resnick, 2012) to complete 

more complex virtual challenges, in which learners must apply their previous programming 

knowledge to problem solving tasks that foreground computational thinking principles like 

abstraction, decomposition, and systems thinking.  

 

(Figure 2 here) 

 

To solve these challenges, students used a programming language called ROBOTC 

Graphical to develop programmed solutions. ROBOTC Graphical has a visual programming 

language interface, intended to allow students to focus on the broader logic of programming 

while deemphasizing the particular syntactic requirements of more traditional programming 

languages (see Figure 3).   

 

(Figure 3 here) 
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By representing robotics challenges in a virtual environment, this curriculum offers 

affordances over physical robotics programs by reducing the potential frustration and distractors 

of mechanical error, enabling students to focus on higher-level computational principles of 

programming. While physical robots may have some advantages, an earlier study by Liu, 

Newsom, Schunn, and Shoop (2013) found that students using an earlier version of this 

technology achieved learning gains in programming content equivalent to students using 

physical robots, but in significantly less time. Simulating robot movement reflects an authentic 

engineering practice (see Michel, 2004), and virtual robots are also less expensive than physical 

ones, allowing the benefits of the curriculum to reach a broader population where the costs of 

physical robotics curricula can be prohibitive.  

Programming assessment.  Students completed a pre-and post-assessment of robotics 

programming and computational thinking, consisting of programming items ranging from 

concepts within the relatively narrow context of the virtual robotics programming language, to 

more general language-agnostic programming questions, as well as generalizable computational 

thinking items in a non-robotics context (see Appendix A for sample items). These items were 

developed to target three core programming concepts common across a range of accepted 

frameworks of programming and computational thinking; sequences, conditions and iteration 

(see AP Computer Science Principles, 2016, Interim CSTA K-12 Computer Science Standards, 

2016; Bienkowski et al., 2015).  

Items were created to assess each of these concepts, at varying levels of functional 

distance from the learning context (Barnett & Ceci, 2002). Functional distance was manipulated 

in order to create three varying levels of transfer within the assessment; Robot Programming, 

General Programming and Computational Thinking (see Table 2).These items assess both 
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knowledge of programming concepts (i.e., sequences, conditions) as well as require the learner 

to engage in computational practices (i.e., testing and refining computational artifacts; see K–12 

Computer Science Framework, 2016). Armor’s q2 for the assessment overall was 0.84. By 

section, the robot programming language questions had a q of 0.64; general programming items 

had a q of 0.68, and the computational thinking items had a q of 0.65. Such theta values are 

common for relatively short assessments that are intended to cover a range of concepts. 

 

(Table 2 here) 

 

Attitudes towards programming. Additionally, students also completed a short survey 

prior to the pre and post-test exams, with 12 items that asked students about their interest, 

competency beliefs, and development of identity in computer programming (see Appendix B for 

a complete list of these survey items). Interest was gauged through four items (e.g., “I wonder 

about how computer programs work”, Cronbach’s a=.79), rated along a four point Likert scale 

(e.g. “Never” to “Every Day”). Competency beliefs were gauged through four items (e.g., “I am 

sure I could do advanced work in programming”, a=.83) rated along a six point Likert scale (e.g. 

“Strongly Disagree” to “Strongly Agree”).  Finally, four items gauged level of identity as a 

programmer (e.g., “My family thinks of me as a programming person”, a=.85), rated along a 

four point Likert scale (e.g. NO! to YES!).  

Measure characteristics. Overall, the three subcategories of skills were moderately 

correlated with each other (see Table 3). Further, post correlations along skills categories 

																																																								
2	Armor’s q is similar to Cronbach’s a, but is more appropriate for binary data (item correct vs. 
item incorrect). 	
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followed the predicted pattern by level of transfer: robot programming and general programming 

were more highly correlated (r =.51) than robot programming and computational thinking (r 

=.43). Attitudinal measures were strongly correlated with each other, but not so high as to be 

redundant measures. Skill measures were relatively independent of attitude measures, but 

computational thinking items were significantly correlated with interest items at pre (r =.24), and 

with competency beliefs at post (r =.31). 

 

(Table 3 here) 

 

Procedure and analysis 

Students within each classroom were randomly assigned one of two analogous forms of 

the assessment (Form A or Form B) as a pre-test prior to starting the robotics curriculum, and 

later took the alternate form of the assessment as a post-test, in order to mitigate test-retest 

effects. Pre-test scores showed no significant differences between Form A (n=64, M=10.3, 

SD=4.5) and Form B (n=66, M=9.64, SD=4.0), t(128)=0.88, p=.38, d=0.15. That is, students 

from a relatively similar population preformed equally well on either form of the assessment 

prior to instruction, suggesting these two forms are relatively analogous measures. Therefore, 

results from both forms were collapsed into pre-test and post-test scores in the reported analyses. 

The motivational survey was identical pre and post, since test-retest effects are not typically a 

concern for such surveys. 

Assessment results were modeled using ANCOVA to determine if there were significant 

differences in post-test scores between the Basic Movement, Sensors and Program Flow student 

groups, while controlling for pre-test scores. Normality and homogeneity of variances for the 
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three groups were tested and all assumptions for the analyses were met. Levene’s tests for 

homogeneity of variance across the three groups showed no significant differences across the 

three groups on pre-test scores for any of the sub-categories of programming assessment items or 

motivational items. Next, a second series of ANCOVAs were conducted to test for differences 

between these groups, but this time separately for each section of the assessment (robotics 

programming, general programming, and computational thinking). This analysis was performed 

to determine if students’ experience with particular units was associated with different levels of 

gains in certain categories of programming assessment items. 

Finally, survey scales were analyzed to determine if participation in each unit was 

significantly associated with changes in the level of student reported programming interest, 

identity formation as a programmer, and competency beliefs in their ability to program. First, 

gains scores were generated as the mean differences between the pre- and post-survey responses 

for each section of the survey. Next, ANCOVA were conducted using these gain scores to 

determine if there were significant differences in gains in interest, identity and competency 

beliefs from pre- to post-survey between the groups of students who reached Basic Movement, 

Sensors, and Program Flow. 

 

Results 

Assessment Results 

Overall results showed on average, significant increases of about 8 percentage points, 

t(101)=5.44, p<.001, d=0.48, from pre- to post for all groups on assessment items, with larger 

mean gains found in the Sensors and Program Flow groups. For the initial analysis of the 

programming assessment items, an ANCOVA showed that overall differences between students 



Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

18	

in the Basic Movement, Sensors, and Program Flow groups were significant when controlling for 

pre-test score, F(2,98)=10.14, p <.001, hp
2=0.17.  Post-hoc analyses showed that while gains for 

the Basic Movement group were significantly lower than both the Sensors and Program Flow 

groups at the p<.001 level, no significant overall differences were found between the Sensors and 

Program Flow groups, p=.73 (see Figure 4).  Therefore, the predicted pattern was found, with 

higher gains for students who progressed beyond the Basic Movement unit. Unexpectedly, 

however, students who reached the Sensors unit also demonstrated overall gains on the 

programming assessment that were comparable to the gains found for students who reached 

Program Flow. 

 

(Figure 4 here) 

 

We next conducted a series of ANCOVA to see if there were significant differences between 

each group in post-test scores within each section of the assessment, controlling for the pre-test 

scores of those sections (see Figure 5). 

Robot programming. The robot programming items showed significant differences 

between the three different student groups, F(2,96)=8.24, p <.001, hp
2=0.15. Post-hoc analyses 

showed significant differences between the Basic Movement group and both the Sensors 

(p<.001) and Program Flow (p<.001) groups, but no significant differences between the Sensors 

and Program Flow groups (p=.53). Students in the Basic Movement group, t(31)=0.37, p=.71, 

d=0.10, and the Program Flow group, t(43)=1.32, p=.19, d=0.20, showed no significant pre- to 

post-test gains on the robotics programming items, while significant gains were found for 

students in the Sensors group, t(23)=2.61, p <.05, d=0.50. In sum, while only students who 
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reached Sensors showed significant pre- to post-test gains on robotics programming items, 

students who reached either Sensors or Program flow showed more growth on programming 

items within a robotics context than students who only reached Basic Movement3. 

General programming. The general programming items showed significant differences 

between the three student groups, F(2,96)=11.62, p <.001, hp
2=0.19. Differences were 

significant between the Basic Movement group and both the Sensors (p<.001) and Program Flow 

(p<.001) group, but there were no significant differences found between the Sensors and 

Program Flow groups (p=.85). Results from the General Programming section of the assessment 

also show no significant pre-post gains for the Basic Movement group t(31)=0.00, p=1.0, d=0.00 

but significant gains for both the Sensors, t(23)=3.76, p<.01, d=0.86, and Program Flow 

t(43)=3.78, p<.001, d=0.59, groups. In sum, students who reached either Sensors or Program 

Flow showed gains on items in a general programming context relative to students who only 

reached Basic Movement, and these gains were slightly larger than the gains showed with the 

robotics programming items, suggesting relatively robust transfer at this level.  

Computational thinking. Computational thinking items showed significant differences 

between the three student groups, F(2,94)=3.82, p <.05, hp
2=0.08. The differences were not 

significant between the Basic Movement group and the Sensors group (p=.16), but significant 

differences were found between the Basic Movement and the Program Flow group (p<.01). No 

significant differences were found between the Sensors and Program Flow groups (p=.27). 

Important to note here is that while on the other sections of the assessment the Sensors group 

showed a significantly higher gain over the Basic Movement group, in the Computation 

Thinking section of the assessment, these differences over Basic Movement only continue to be 

																																																								
3 Effect sizes are of d=.20 are considered “small”, d=.50 “medium” and d=.80 “large”. 
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significant for the group that completed the Program Flow section. Results from the 

Computational Thinking section of the assessment also show no significant gains for the Basic 

Movement group t(23)=1.50, p=.14, d=0.40, or the Sensors, t(23)=1.22, p=.24, d=0.31, groups, 

but significant gains were found for the Program Flow group, t(41)=3.00, p<.01, d=0.45. 

Therefore, the results suggest that particularly on items in the most distant computational 

thinking context, there is a unique advantage for students who reach the Program Flow unit. 

 

(Figure 5 here) 

 

Motivation Change Results 

To determine if different motivational effects were associated with each of the classroom 

conditions, simple ANOVAs were conducted using the pre and post scores in Interest, Identity, 

or Competency Beliefs (see Figure 6).  All three conditions showed pre-post declines, but to 

different degrees. 

Interest. For Interest, significant differences were found in the level of interest changes 

between the three groups, F(2,99)=6.06, p <.01, hp
2=0.11. Between group differences were 

significant for the Program Flow and Basic Movement groups (p<.001) and for the Sensors and 

Basic Movement groups (p<.05), but there were no significant differences in Interest changes 

found between the Sensors and Program Flow groups. Therefore, results would suggest that in 

addition to the content gains that were shown above, reaching both the Sensors, and particularly 

the Program Flow unit, is also associated with relatively smaller declines in Interest in 

programming. A significant decline in Interest from pre- to post-survey was found for students in 

the Basic Movement group, t(31)=4.56, p<.001, d=0.61.  Small, marginally statistical declines in 
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Interest were found for the Sensors group, t(24)=1.91, p<.1, d=0.36 and there was no significant 

decline in Interest for the Program Flow group, t(44)=1.57, p=.12, d=0.13.  

Identity. Identity showed no significant differences between the three student groups, 

F(2,99)=0.99, p =.37, hp
2=0.01. These results suggest that there was little impact on Identity for 

the six to nine-week course, despite the different levels of content that were reached. Of the three 

groups, only the Sensors groups showed small but marginally significant pre-post differences in 

Identity, t(24)=1.79, p<.1, d=0.31, with no significant changes found in either the Basic 

Movement group, t(31)=0.51, p=.61, d=0.08, or the Program Flow group, t(44)=0.00, p=1.0, 

d=0.00.  

Competency Beliefs. Finally, for Competency Beliefs, there were no significant 

differences between the Basic Movement and Program Flow groups; however post-hoc analyses 

showed that significant differences were found between Sensors and Basic Movement (p<.05).  

Significant declines in Competency Beliefs were found for both the Basic Movement group, 

t(31)=2.81, p<.01, d=0.40, and for the Program Flow group, t(44)=2.46, p<.05, d=0.27.  There 

were no significant pre-post differences in Competency Beliefs for the Sensors group, t(24)=0.0, 

p=1.0, d=0.00. In sum, the Competency Belief declines were largest in the Basic Movement 

group, smaller yet significant in the Program Flow group, and non-existent in the Sensors group. 

 

(Figure 6 here) 

Differences by Gender 

Because the literature suggests that motivational factors can be strong predictors of performance 

for women, particularly in traditionally male-dominated fields like CS (Pajares, 1996; Zeldin & 

Pajares, 2000), we conducted a follow-up ANOVA to determine if there were significant 
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differences by gender on the knowledge and motivational assessments, across all units. For 

motivational factors, we found no significant differences between boys and girls at post, 

controlling for pre, on interest, F(1,99)=0.69, p=.41, hp
2=0.01, identity, F(1,99)=1.10, p=.30, 

hp
2=0.01, or competency beliefs, F(1,99)=0.57, p=.45, hp

2=0.01.  However, when looking at the 

three components of the knowledge assessment, girls showed significantly higher gains on each 

section of the assessment, with particularly large advantages for girls in Robotics Programming, 

F(1,97)=15.28, p <.001, hp
2=0.15. Smaller significant differences were also found between boys 

and girls on General Programming, F(1,97)=6.65, p <.05, hp
2=0.06, and in Computational 

Thinking, F(1,97)=5.45, p <.05, hp
2=0.05.  This translates to girls performing about a 14 

percentage points higher than males on the Robotics Programming items, about 12 percentage 

points higher on the General programming items, and about 9 percentage points higher on the 

Computational Thinking items, when controlling for their pre-test scores (see Figure 7).  

 

(Figure 7 here) 

 

Therefore, while girls and boys showed no significant differences in their motivations about 

programming, girls showed larger gains in their programming knowledge than boys who 

participated in the curriculum; possible explanations of these and other findings are taken up in 

the next section. 

General Discussion 

With this study, we contribute to the literature on development of computational thinking 

and of knowledge transfer in a programming context by evaluating whether students’ 

involvement in a virtual robotics curriculum is associated with an increase in their generalizable 
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programming knowledge and computational thinking. Thus, the very concrete context of robotics 

can be used to successfully teach relatively abstract computational concepts and skills. 

Further, we found that students’ experiences with more conceptually rich units, which 

provide multiple opportunities to engage in structurally similar tasks, are associated with larger 

gains on programming assessment items presented in increasingly dissimilar contexts. This 

finding supports the initial design decision to shorten the curriculum, in order to allow more 

students to reach these later units. Importantly, when looking at specific groups of assessment 

items, groups reaching those units performed better on more generalizable assessment items on 

relatively dissimilar tasks, suggesting that the particular features of those units better facilitate 

transfer for programming knowledge. 

Another primary aim of this study was to determine if participation in a virtual robotics 

curriculum was associated with changes in certain motivational characteristics that might predict 

continued participation in computer science. Specifically, we examined whether students’ 

participation in each curriculum was associated with differential gains in programming interest, 

identity as a programmer, and beliefs in their programming abilities. Overall, results showed 

declines in these motivation characteristics; however, more nuanced patterns emerged when 

observing these characteristics by group. Most importantly, programming interest did not decline 

for those students who had completed the Program Flow unit.  

Finally, our study shows that despite showing no pre-test differences on both knowledge 

and motivational factors, girls who participated in these programs showed relatively higher 

performance on the post-test than boys. This supports prior work suggesting that girls typically 

outperform boys on a variety of subject throughout middle school, despite not necessarily being 

any more confident in their abilities (Pomerantz, Altermatt, & Saxon, 2002).  
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Limitations 

One potential concern regarding the current study is the lack of random assignment to 

conditions. As a result, the inherently correlation design does not directly address causality, and 

we cannot be 100% certain that it was in fact differential exposure to the curriculum that caused 

the observed changes. For example, it is possible that other unobserved factors, such the 

particular instructional approaches taken by the teacher or the use of physical robotics to 

supplement the virtual curriculum, may have varied. However, the teachers were equivalent in 

training, and the classrooms making less progress were given a curriculum which have many 

more basic activities, providing a plausible explanation for the differential progress.   

Second, there is the potential age confound with our three groups. The Program Flow 

group was found somewhat older than the other two; therefore, it is possible that latent, 

unmeasured factors (e.g. mathematics learning) that occur during these grades could also be 

different for this group, accounting for some of the differences in gains found. However, we 

were able to show that students were comparable in their robotics experience and on their pre-

test scores across all groups, and age differences would also not account for the differences 

found between the Basic Movement and Sensors group, which did not significantly differ in age. 

Therefore, while age may explain some of the overall effect on assessment score, it is unlikely to 

account for the differential patterns across the range of dissimilar assessment items.   

Implications 

Results found here support earlier evaluation of a similar curriculum (see Authors, in 

press), showing that groups of students who were able to reach more conceptually rich units of 

the curriculum (i.e., Sensors, Program Flow) were more likely to show gains across all 

assessment items. Additionally, however, our current results show that groups reaching these 
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units demonstrated particularly large gains specifically on the assessment items that were 

relatively dissimilar from the original learning context. This is consistent with other studies in 

the transfer literature that suggest students might acquire more generalizable knowledge by 

engaging in tasks that vary superficial features while maintaining structural features, as was most 

characteristic of tasks found in the Sensors and Program Flow units.  

An interesting finding from this study is that on the most dissimilar computational 

thinking items, only groups reaching the Program Flow unit showed significant gains above 

those found in the Basic Movement group. One interpretation could be that the particular content 

taught during Program Flow may provide students with additional opportunities to engage with 

the logical structure of programming above and beyond Sensors. For example, the key 

programming concept of iteration that is first introduced in this unit requires students to 

understand how a looping (or “repeat”) structure can disrupt the typically sequential flow of a 

program execution, and that the “repeat” operates on all commands within that loop. In the visual 

programming language used with this curriculum, these loop structures are visually supported 

through the use of color-coded virtual “brackets” which allow students to drag and drop the 

commands to be repeated inside this loop structure. Therefore, through attending to the 

underlying logic of the program execution in this unit, and using the features of the programming 

language to emphasize program structure, students who engage in this unit may develop more 

schematized programming knowledge that is more likely to be instantiated when solving 

dissimilar problems (Reed, 1993).  

Overall, results from the motivational analyses show declines across each of our 

motivational measures. As we mentioned before, one of the known challenges in implementing 

robotics courses in K-12 environments, unlike in informal robotics programs, is that students 
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have not self-selected into these learning environments. Prior motivational studies of broad 

cross-sections of students (i.e., not those specifically focused on STEM) have shown significant 

declines in valuation of STEM subjects in middle school (Wigfield & Eccles, 2000). It is 

possible, therefore, that our negative results merely show that our relatively short intervention 

was unable to reverse this trend. Studies showing growth in interest development and STEM 

identity development often find significant effects only after years of intervention (Aschbacher et 

al., 2010; Hidi & Renninger, 2006).  However, it is encouraging that while the overall direction 

of these gains remained negative, in some groups we were able to observe a significant effect 

that appears to maintain interest in programming even after a short amount of time. Theories of 

interest development suggest that if maintained over time, a triggered situational interest can 

evolve into a self-generated individual interest that leads to seeking additional opportunities to 

participate in similar tasks (Hidi & Renninger, 2006). Therefore, future studies should continue 

to investigate the potential for interventions that both prevent the typical decline in STEM during 

middle school, as well as develop more powerful interventions that may reverse the effect. 

The observed patterns in competency beliefs can be interpreted in relation to the relative 

unfamiliarity of the requirements of programming for middle schoolers. Particularly in middle 

school, students who are relatively unfamiliar with programming may experience a Dunning-

Kruger effect, where their assessment of their abilities are overly high, in part because their lack 

of conceptual understanding of what programming entails causes their metacognitive self-

assessments to be inaccurate prior to engaging in the curriculum (Kruger & Dunning, 1999). 

Further, superficial levels of understanding can help these inaccurate self-assessments to persist, 

particularly if the learning environment prioritizes task completion rather than conceptual 

understanding. For example, in simpler units of a robotics programming curriculum, student may 
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be able to complete the robot tasks through guess-and-check methods, without much 

understanding of the steps that were critical to accomplishing that task. If the curriculum allows 

students to continually reconfirm their high self-assessment through automated feedback from 

the virtual environment that affirms their progress, this mismatch between competency beliefs 

and actual ability could grow, creating more drastic declines self-assessed competency when 

later more difficult tasks are no longer solvable using the same novice methods. Therefore, to 

avoid this effect in measurement, it would be interesting in future studies to implement a 

retrospective pre-test method for measuring competency beliefs, where students would reflect at 

post-test about the amount of knowledge they thought they had beginning, compared to the 

amount that they had after completing the curriculum.  Nonetheless, even if the effect is 

attributable to an improved understanding of what it means to be competent, future work should 

seek to leave students feeling more confident in their abilities, perhaps through a growth mindset 

intervention (Blackwell, Trzesniewski, & Dweck, 2007; Miele & Molden, 2010). 

 

Conclusion 

Educational robotics may provide an opportunity to develop generalizable programming 

knowledge and skills, as well as maintaining interest in programming through middle school.  

This is particularly important as the number of careers related to computer science continues to 

grow, and as computer science knowledge and skills become more broadly applicable in a 

variety of non-computing fields.  Teaching CS to all students is likely to require the inclusion of 

CS instruction as a non-elective, general education class; however, less is known about potential 

difficulties in implementing educational robotics in these more traditional K-12 classrooms. This 

study suggests that a virtual robotics curriculum that utilizes a visual programming language, and 
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offers dynamic programming tasks that vary superficial task features while keeping structural 

features constant, could help develop knowledge structures that can be more readily applied in 

relatively dissimilar contexts.  Future studies utilizing a more rigorous quasi-experimental design 

to control for a variety of potential differences between the conditions, as well as complementary 

qualitative analyses, could provide additional insight into how particular instructional decisions 

may interact with the curriculum to prevent or enhance the effects on student learning and 

motivation. 
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Supporting Information 

Supplemental resources containing additional details and examples of this curriculum are 

available here.  

The linked website provides limited access to a wireframe mockup example of one of the 

lessons from the Program Flow unit utilized in the study, including a contextual introduction, 

scaffolded mini-lessons, worked example code review, and an open-ended dynamic challenge, as 

well as all accompanying videos. Available for navigation in the side menu are all materials and 

video within the pages titled: Introduction with Container Transport, Looped Decision, Code 

Review and Strawberry Sorter Challenge (other menu items are restricted in this sample version). 
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Tables 

Table 1. Analysis of challenge tasks and programming concepts for each curricular unit 

Unit Chapter  Challenge Task  Programming Concepts 

Basic Movement Moving Forward Static Sequences 

 Turning Static Sequences 

Sensors Forward Until Near Dynamic Sequences, Conditions 

 Turn for Angle Static Sequences, Conditions 

 Color Sensor Dynamic Sequences, Conditions 

Program Flow Loops Dynamic Sequences, Conditions, Iteration 

 If-Else Dynamic Sequences, Conditions, Iteration 

 Repeated Decisions Dynamic Sequences, Conditions, Iteration 
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Table 2. An overview of the three functional dimensions and the three programming concepts of 

the Programming Assessment. 

Dimensions Items Concepts  Items Example content 

Robot 

Programming 

6 Sequences 2 What sequence of movements will get the robot 

to the end of the maze? 

Conditions 2 At what distance sensor value will the robot 

stop moving? 

Loops 2 Which actions will the robot repeat if the 

bumper sensor is pushed in?  

General 

Programming 

7 Sequences 2 In what order will a program run if additional 

lines are added to it? 

Conditions 3 Can a condition always be evaluated as either 

true or false? 

Loops 2 Can program be written that will make a loop 

repeat in reverse? 

Computational 

Thinking 

12 Sequences 3 Will the removal of this line of the program 

change the display on a heart monitor? 

Conditions 5 At what combination of blood pressure readings 

will this heart monitor emit an alarm? 

Loops 4 Which of these two programs will identify the 

correct blood pressure in the least number of 

iterations?  
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Table 3. Maximum values, pre-post grand means (and SD), and measure intercorrelations, with 

pre-post correlations on the diagonal in square brackets, post-post correlations above the 

diagonal, and pre-pre correlations below the diagonal. 

 

 Pre  Post        

 N  M (SD)  N  M (SD) Max 1 2 3 4 5 6 

1. RP1 128 2.6 (1.3)  107 3.0 (1.3) 6 [.49]** .51** .43** .15 .05 .23 

2. GP2 128 3.1 (1.6)  107 4.0 (1.8) 7 .54** [.37]** .52** .12 -.05 .12 

3. CT3 127 4.5 (2.2)  107 5.3 (2.4) 12 .40** .31** [.41]** .18 .08 .31* 

4. Int.4 130 2.4 (.66)  107 2.2 (.75) 4 .13 .15 .24* [.73]** .68** .64** 

5. ID5 130 1.9 (.69)  107 1.8 (.75) 4 .09 .14 .17 .72** [.70]** .60** 

6. CB6 130 4.3 (1.0)  107 4.0 (1.3) 6 .17 .13 .17 .64** .62** [.70]** 

Note. * p <.01 ** p <.001 

1 Robot Programming 2General Programming 3Computational Thinking 4 Interest 5 Identity 6 Competency Beliefs 

 

  



Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

40	

Figure Legend 

 
Figure 1. An example of a text-based programming language, and a visual programming 

language using graphical features. 
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Figure 2. An example of a dynamic programming task. Using if/else statements, loops, and 

sensors, students program the robot to sort flags onto the left or right conveyor belt based on the 
color, which is dynamically assigned. 
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Figure 3. Examples of the graphical programming language used. 
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Figure 4. Mean overall skill postscore (with SE bars) by classroom condition, controlling for pre. 
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Figure 5. Post-test means (with SE bars) in each skill measure, controlling for pre-test, for each 

condition. 
  

0.3

0.4

0.5

0.6

0.7

Robot	Programming General	Programming Computational	Thinking

Es
t.	
Pr
op
or
tio

n	
Co
rr
ec
t	

Basic	Movement +Sensors +Program	Flow

**

***

***

* p<.05,	** p<.01,	***	p<.001



Running	Head:	PROGRAMMING	IN	VIRTUAL	ROBOTICS	

	

45	

 
 

 
 

 
 

 
 

 
 
 
 

 
 

 
 

 
Figure 6. Mean pre-post changes in Interest, Identity, and Competency Beliefs, by amount of 

progress through the curriculum. 
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Figure 7. Post-test means (with SE bars) in each skill measure, controlling for pre-test, by 

gender. 
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Table 1. Analysis of challenge tasks and programming concepts for each curricular unit 

Unit Chapter  Challenge Task  Programming Concepts 

Basic Movement Moving Forward Static Sequences 

 Turning Static Sequences 

Sensors Forward Until Near Dynamic Sequences, Conditions 

 Turn for Angle Static Sequences, Conditions 

 Color Sensor Dynamic Sequences, Conditions 

Program Flow Loops Dynamic Sequences, Conditions, Iteration 

 If-Else Dynamic Sequences, Conditions, Iteration 

 Repeated Decisions Dynamic Sequences, Conditions, Iteration 
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Table 2. An overview of the three functional dimensions and the three programming concepts of 

the Programming Assessment. 

 

 
  

Dimensions Items Concepts  Items Example content 

Robot 

Programming 

6 Sequences 2 What sequence of movements will get the robot 

to the end of the maze? 

Conditions 2 At what distance sensor value will the robot 

stop moving? 

Loops 2 Which actions will the robot repeat if the 

bumper sensor is pushed in?  

General 

Programming 

7 Sequences 2 In what order will a program run if additional 

lines are added to it? 

Conditions 3 Can a condition always be evaluated as either 

true or false? 

Loops 2 Can program be written that will make a loop 

repeat in reverse? 

Computational 

Thinking 

12 Sequences 3 Will the removal of this line of the program 

change the display on a heart monitor? 

Conditions 5 At what combination of blood pressure readings 

will this heart monitor emit an alarm? 

Loops 4 Which of these two programs will identify the 

correct blood pressure in the least number of 

iterations?  
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Table 3. Maximum values, pre-post grand means (and SD), and measure intercorrelations, with 

pre-post correlations on the diagonal in square brackets, post-post correlations above the 

diagonal, and pre-pre correlations below the diagonal. 

 

  

 Pre  Post        

 N  M (SD)  N  M (SD) Max 1 2 3 4 5 6 

1. RP1 128 2.6 (1.3)  107 3.0 (1.3) 6 [.49]** .51** .43** .15 .05 .23 

2. GP2 128 3.1 (1.6)  107 4.0 (1.8) 7 .54** [.37]** .52** .12 -.05 .12 

3. CT3 127 4.5 (2.2)  107 5.3 (2.4) 12 .40** .31** [.41]** .18 .08 .31* 

4. Int.4 130 2.4 (.66)  107 2.2 (.75) 4 .13 .15 .24* [.73]** .68** .64** 

5. ID5 130 1.9 (.69)  107 1.8 (.75) 4 .09 .14 .17 .72** [.70]** .60** 

6. CB6 130 4.3 (1.0)  107 4.0 (1.3) 6 .17 .13 .17 .64** .62** [.70]** 

Note. * p <.01 ** p <.001 

1 Robot Programming 2General Programming 3Computational Thinking 4 Interest 5 Identity 6 Competency Beliefs 
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Appendix A. 
 
Sample robotics programming items 
 

Take a look at the program plan below. How will each individual line of code be run once it 
is programmed? 

 
Line 1: Move forward for 5 seconds, at 100% speed 
Line 2: Turn left 1 rotation, at 50% speed 
Line 3: Move forward for 5 seconds, at 50% speed 
Line 4: Turn right 1 rotation, at 50% speed 

 
Select one: 

O Only the first command runs 
O The commands are run in order according to their line numbers  
O All commands run at once 
O The commands are run in a random order 

 
Sample general programming item 
 

Which of the following is true about conditions? 
 

Select one: 
O They must always end up either true or false 
O They represent decision-making logic in a program 
O You can write a condition that is always true or always false 
O All of the above 
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Sample computational thinking item 
 
Scenario C: Personal Fitness Devices 
Personal fitness devices use electronic sensors to continuously monitor and track data about a 
user’s heath such as steps taken, calories burned, and heart rate.    
The BP-Sure company is developing a new feature for their fitness device that also measures the 
user’s blood pressure, using sensors that detect a user’s heartbeat. When the heart pushes blood 
through the arteries, the device records "Pressure 1", and when the heart is resting, the device 
records “Pressure 2”.	 

 
The device can determine if a user’s blood pressure is in the Normal, Medium or High range, by 
comparing blood pressure readings to the chart below. 
 
Use the chart below to answer questions #19, #20 and #21. 
 
 

 
 
 
 
A new programmer on the team writes the following series of steps to determine the display 
when a user is in the “Normal BP” range: 
	

(Line	1)	 IF (p1 <= 120 AND  
(Line	2)	       p1 <= 121 AND  
(Line	3)	       p2 <= 80   AND 
(Line	4)	       p2 <= 81) 
(Line	5)	 THEN	set display = “Normal	BP”  
 

Which lines can be removed to make the code more efficient, while not changing the 
code output? 

 
Select one: 

O Line 1 and Line 4 
O Line 2 and Line 3 
O Line 2 and Line 4  
O Line 1 and Line 3 

 
 

Blood Pressure  Pressure 1 (p1)  Pressure 2 (p2) 
Normal BP p1 <= 120 AND  p2 <= 80 
Medium BP 121 <= p1 <= 139 AND 81 <= p2 <= 89 

High BP  p1 >= 140  OR p2 >= 90 
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Appendix B. Sample motivational survey items 
 
Sample interest items 
 
I wonder about how computer programs work.  
 
O Never 
O Once a month 
O Once a week 
O Every day 

 
In general, when I work on programming, I: 
O Hate it 
O Don’t like it 
O Like it 
O Love it 

 
In general, I find programming: 
O Very boring 
O Boring 
O Interesting 
O Very interesting 

 
After a really interesting programming activity is over, I look for more information about it. 
O NO! 
O No 
O Yes 
O YES! 
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Sample identity items 
 
Please rate according to Not me and Exactly me. 

 Exactly Me 
(1) (2) (3) Not Me 

(4) 
I am a "computer programming 
person". O O O O 

 
 
8. Please rate these according to YES!, Yes, No, and NO! 
 YES! yes no NO! 
     
a. My family thinks of me as a "programming 
person". 
 

O O O O 

b. My friends think of me as a "programming person". 
 

O O O O 

c. My teachers/instructors think of me as a 
"programming person". 

O O O O 

 
 
Sample competency belief items 

 
 
 

 Strongly 
Agree 

Somewhat 
Agree 

Agree Disagree Somewhat 
Disagree 

Strongly 
Disagree 

       
a. I am sure I could do 
advanced work in 
programming. 

O O O O O O 

 
b. I am sure that I can 
learn programming. 

O O O O O O 

 
c. I could do a good job 
as a programmer for an 
afterschool robotics 
team at my school. 

O O O O O O 

 
d. I could get an A on a 
programming 
assignment in a 
technology class. 

O O O O O O 


